Description
有 (n) 件工作要分配给 (n) 个人做。第 (i) 个人做第 (j) 件工作产生的效益为 (C_{i,j}) 。试设计一个将 (n) 件工作分配给 (n) 个人做的分配方案,使产生的总效益最大。
Input
文件的第 (1) 行有 (1) 个正整数 (n),表示有 (n) 件工作要分配给 (n) 个人做。
接下来的 (n) 行中,每行有 (n) 个整数 (C_{i,j}),表示第 (i) 个人做第 (j) 件工作产生的效益为 (C_{ij})。
Output
两行分别输出最小总效益和最大总效益。
Hint
(1~leq~n~leq~100)
Solution
先考虑最小收益,由于必须所有的工作都被分配,所以这个限制可以转化为最大流,由于是最小费用,所以可以转化成最小费用最大流。
将人和工作之间连边,容量为 (1),费用为效益。建立超级源点超级汇点,源点连向人,容量为 (1),费用为 (0)。工作连向汇点,容量为 (1),费用为 (0)。这样保证了一个任务选且被选一次,同时费用即为收益。
考虑最大收益:将所有费用取相反数,求出答案再取相反即可。
Code
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top=0;
do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 210;
const int INF = 0x3f3f3f3f;
struct Edge {
int from, to, flow, fee;
Edge *nxt, *bk;
};
Edge *hd[maxn], *pre[maxn];
inline void cont(Edge *u, Edge *v, int from, int to, int fl, int fe) {
u->from = from; u->to = to; u->flow = fl; u->fee = fe; u->bk = v;
u->nxt = hd[from]; hd[from] = u;
}
inline void conet(int from, int to, int fl, int fe) {
Edge *u = new Edge, *v = new Edge;
cont(u, v, from, to, fl, fe); cont(v, u, to, from, 0, -fe);
}
int n, s, t, ans;
int cost[maxn], maxflw[maxn], MU[maxn][maxn];
bool inq[maxn];
std::queue<int>Q;
bool SPFA();
void argu();
int main() {
freopen("1.in", "r", stdin);
qr(n);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
qr(MU[i][j]); conet(i, j + n, 1, MU[i][j]);
}
}
s = (n << 1) | 1; t = (n << 1) + 2;
for (int i = 1; i <= n; ++i) conet(s, i, 1, 0);
for (int i = n + 1; i < s; ++i) conet(i, t, 1, 0);
ans = 0;
while (SPFA()) argu();
qw(ans, '
', true);
memset(hd, 0, sizeof hd);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) conet(i, j + n, 1, -MU[i][j]);
}
for (int i = 1; i <= n; ++i) conet(s, i, 1, 0);
for (int i = n + 1; i < s; ++i) conet(i, t, 1, 0);
ans = 0;
while (SPFA()) argu();
qw(-ans, '
', true);
return 0;
}
bool SPFA() {
memset(cost, 0x3f, sizeof cost);
memset(inq, 0, sizeof inq);
memset(pre, 0, sizeof pre);
memset(maxflw, 0, sizeof maxflw);
cost[s] = 0; Q.push(s); maxflw[s] = INF;
while (!Q.empty()) {
int h = Q.front(); Q.pop(); inq[h] = false;
if (!maxflw[h]) continue;
for (Edge *e = hd[h]; e; e = e->nxt) if (e->flow > 0) {
int to = e->to;
if (cost[to] > (cost[h] + e->fee)) {
cost[to] = cost[h] + e->fee;
maxflw[to] = std::min(maxflw[h], e->flow);
if (!inq[to]) Q.push(to);
inq[to] = true; pre[to] = e;
}
}
}
return cost[t] != INF;
}
void argu() {
for (Edge *e = pre[t]; e; e = pre[e->from]) {
e->flow -= maxflw[t];
e->bk->flow += maxflw[t];
}
ans += maxflw[t] * cost[t];
}