• 逆矩阵


    1.定义:

    [公式] 是数域上的一个 [公式] 阶方阵,若在相同数域上存在另一个 [公式] 阶矩阵 [公式] ,使得: [公式] 。 则我们称 [公式][公式] 的逆矩阵,而 [公式] 则被称为可逆矩阵,记为 [公式]

    这里 [公式] 是单位矩阵:[公式],也就是主对角线(就这一条啊,别的都不算)全是“ [公式] ”,别的地方全是“ [公式] ”,且单位矩阵一定是方阵。

    解毒:现在都知道矩阵不过是一张数表了吧,那么现在暂且先告诉你,要求原矩阵的逆矩阵,那么原矩阵就必须是个方阵(即矩阵 [公式] 的是 [公式][公式] 列的),且 [公式] (唉,完了完了,行列式又忘记讲了...)。所谓在相同数域上存在,也就是原矩阵和逆矩阵的都是相同的(复数域C、实数域R、有理数域Q...)。当 [公式] 时,之前说了矩阵乘法是没有交换率,但这里可以理解为一个倒数乘以它本身就等于 [公式] (单位矩阵嘛,差不多差不多)。

    下面讲解法: [公式] (1.1)

    从式1.1中就可以看出,原矩阵就必须是个方阵,且 [公式] ,因为在不知道广义逆之前,只有方阵才能算行列式的值,且其作为分母不能为零。

    [公式] 就是方阵 [公式] 的“伴随矩阵”(真的......算了还是写在这里吧)。

    在行列式里讲了余子式 [公式] 和代数余子式 [公式] ,那伴随矩阵其实就是 [公式]

    也就是方阵 [公式] 的“伴随矩阵" 就是把方阵 [公式] 中的元素 [公式] 替换成对应的代数余子式 [公式] 然后转置即可。

     作者:网瘾少年

    链接:https://zhuanlan.zhihu.com/p/32888611
    来源:知乎
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


    2、矩阵的伪逆和左右逆

    伪逆矩阵:

    伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但在matlab里可以用函数pinv(A)求其伪逆矩阵。基本语法为X=pinv(A),X=pinv(A,tol),其中tol为误差,pinv为pseudo-inverse的缩写:max(size(A))*norm(A)*eps。函数返回一个与A的转置矩阵A' 同型的矩阵X,并且满足:AXA=A,XAX=X.此时,称矩阵X为矩阵A的伪逆,也称为广义逆矩阵。pinv(A)具有inv(A)的部分特性,但不与inv(A)完全等同。  如果A为非奇异方阵,pinv(A)=inv(A),但却会耗费大量的计算时间,相比较而言,inv(A)花费更少的时间。

    https://www.cnblogs.com/AndyJee/p/5082508.html

  • 相关阅读:
    浅析堆与垃圾回收
    再探JVM内存模型
    索引使用的基本原则
    常见的索引模型浅析
    初识InnoDB体系架构和逻辑存储结构
    一条update SQL语句是如何执行的
    MySQL一条查询语句是如何执行的
    堆与优先队列
    ibatis BindingException Parameter 'status' not found. Available parameters are [arg1, arg0, param1, param2] 解决方法
    Mysql通过MHA实现高可用
  • 原文地址:https://www.cnblogs.com/yibeimingyue/p/13172552.html
Copyright © 2020-2023  润新知