note 前半部分是Analytic Combinatorics by Philippe Flajolet, Robert Sedgewick的
III.2. Bivariate generating functions and probability distributions 这一节的笔记
note 2020-09-17 19:12 增加了《具体数学》里的PGF部分
随机结构举例 two classical combinatorial distributions
PGF Probability generating functions定义
[p(u)=sum_{k} mathbb{P}(X=k) u^{k}
]
当然,能从BGF推到PGF
矩 Moments
The (power) moments are (r阶矩定义)
[mathbb{E}left(X^{r}
ight):=sum_{k} mathbb{P}{X=k} cdot k^{r}
]
The factorial moment defined for order r as (r order-阶乘矩定义)
[E[X(X-1) cdots(X-r+1)]
]
从BGFs 推到 Moments
例题
二项分布的r order-阶乘矩
[f_{n,k}=inom{n}{k}
]
先算出OBGF
[W(z,u)=frac{1}{1-z-zu}
]
算出对(u)的(r)阶偏导,再取(u=1)
[left.frac{partial^{r}}{partial u^{r}} W(z, u)
ight|_{u=1}=frac{r ! z^{r}}{(1-2 z)^{r+1}}=frac{r ! (2z)^{r}}{2^r(1-2 z)^{r+1}}
]
对([z^n])反演得到【以(n)为变量,(r)为参数的某表达式】 (分子)
[left.left[z^{n}
ight] partial_{u}^{r} W(z, u)
ight|_{u=1}=frac{r!}{2^r}inom{n}{r}2^n
]
(W(z,1))对([z^n])反演得到 (分母)
[left[z^{n}
ight] W(z, 1)=[z^n]frac{1}{1-2z}=2^n
]
分子分母代入这个公式,得到r order-阶乘矩
[mathbb{E}_{mathcal{A}_{n}}(chi(chi-1) cdots(chi-r+1))=frac{left.left[z^{n}
ight] partial_{u}^{r} A(z, u)
ight|_{u=1}}{left[z^{n}
ight] A(z, 1)}=frac{r!}{2^r}inom{n}{r}
]
接着没事可以算算期望,方差
期望(1 order-阶乘矩)
[mathbb{E}_{mathcal{A}_{n}}(chi)=frac{n}{2}
]
用公式(mathbb{E}_{mathcal{A}_{n}}left(chi^{2}
ight)=frac{left.left[z^{n}
ight] partial_{u}^{2} A(z, u)
ight|_{u=1}}{left[z^{n}
ight] A(z, 1)}+frac{left.left[z^{n}
ight] partial_{u} A(z, u)
ight|_{u=1}}{left[z^{n}
ight] A(z, 1)})得到二次矩
[mathbb{E}_{mathcal{A}_{n}}(chi^2)=frac{n(n-1)}{4}+frac{n}{2}=frac{n(n+1)}{4}
]
使用方差公式(mathbb{V}(X)=mathbb{E}left(X^{2}
ight)-mathbb{E}(X)^{2})得到方差
[mathbb{V}(chi)=frac{n(n+1)}{4}-frac{n^2}{4}=frac{n}{4}
]
附录
下面的内容来自《具体数学》中概率生成函数小节
为什么要使用概率生成函数?(G(z)=sum Pr(X=k)z^k)
一大长处是可以简化均值和方差的计算。(嗯这两个公式挺好证的,把右边展开成和式)
[Mean(G)=G'(1)\
Var(G)=G''(1)+G'(1)-G'(1)^2\
E[G^2]=G''(1)+G'(1)
]
第二大长处是:在许多重要的情形,它们都是(z)的比较简单的函数
第三大长处是:概率生成函数的乘积对应于(相互独立的)随机变量之和
然后有意思的是引入了累积量,和多阶矩、r-order阶乘矩很是像,都是数字特征里更加“高次”的东西。
定义(kappa_i)是累积量,由下面的公式给出。由此定义式可见看出,由于【对数变乘为加】以及【概率生成函数的乘积对应于随机变量之和】,所以:独立随机变量之和的所有累积量也可由原来的对应累积量相加得到。
[ln G(e^t)=frac{kappa_1}{1!}t+frac{kappa_2}{2!}t^2+frac{kappa_3}{3!}t^3+frac{kappa_4}{4!}t^4+dots
]
定义(alpha_m)是阶乘矩(alpha_m=E[X(X-1) cdots(X-m+1)])
定义(mu_m)是(m)阶矩,(mu_m=E[X^m])
把PGF (G(e^t))各种改写,比对系数,得到这三个“高次量”的相互转换
拿(kappa_i)写(G(e^t)) (把累计量的定义式取指数)
[G(e^t)=1+frac{frac{kappa_1}{1!}t+frac{kappa_2}{2!}t^2+dots}{1!}+frac{(frac{kappa_1}{1!}t+frac{kappa_2}{2!}t^2+dots)^2}{2!}+dots
]
拿(mu_m)写
[egin{aligned}
G(e^t)=sumlimits_{kgeq 0}Pr(X=k)e^{kt}&=sumlimits_{k,mgeq 0}Pr(X=k)k^mcdotfrac{t^m}{m!}\
&=1+frac{mu_1}{1!}t+frac{mu_2}{2!}t^2+frac{mu_3}{3!}t^3+dots
end{aligned}
]
拿(alpha_m)写
因为
[egin{aligned}
G(1+t)&=G(1)+frac{G'(1)}{1!}t+frac{G''(1)}{2!}t^2+cdots\
&=1+frac{alpha_1}{1!}t+frac{alpha_2}{2!}t^2+cdots
end{aligned}
]
于是
[egin{aligned}
G(e^t)&=1+frac{alpha_1}{1!}(e^t-1)+frac{alpha_2}{2!}(e^t-1)^2+cdots\
&=1+frac{alpha_1}{1!}(t+frac{t^2}{2}+...)+frac{alpha_2}{2!}(t^2+t^3+...)+cdots
end{aligned}
]