• 二叉排序树查找所在层次 与判断是否为二叉排序树


    二叉排序树

     二叉排序树的递归查找
     二叉排序树的插入
     二叉排序树的创建
     二叉排序树的删除

    提示:判断是否为二叉排序树时,根据二叉排序树的性质,在进行中序遍历的时候,当前结点的值总是大于前驱结点的值,
    需要在遍历时保存前驱结点的值,这样有利于进行判断,基于这样的思路来进行解题。

    #include <iostream>
    using namespace std;
    #define ENDFLAG -1
    //char a[10]={'5','6','7','2','1','9','8','10','3','4','#'};//全局变量
    typedef struct ElemType
    {
    	int key;
    } ElemType;
    
    typedef struct BSTNode
    {
    	ElemType data;			  //结点数据域
    	BSTNode *lchild, *rchild; //左右孩子指针
    } BSTNode, *BSTree;
    
    //算法7.4 二叉排序树的递归查找
    BSTree SearchBST(BSTree T, int key)
    {
    	//在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素
    	//若查找成功,则返回指向该数据元素结点的指针,否则返回空指针
    	if ((!T) || key == T->data.key)
    		return T; //查找结束
    	else if (key < T->data.key)
    		return SearchBST(T->lchild, key); //在左子树中继续查找
    	else
    		return SearchBST(T->rchild, key); //在右子树中继续查找
    } // SearchBST
    
    //非递归实现查找成功时返回指向该数据元素结点的指针和所在的层次
    BSTree Searchlev(BSTree T, int k, int &lev)
    {
    	//统计查找次数
    
    	// BSTree p = T; //p为二叉树中工作指针
    	
    		lev++;
    		while(T)
    		{ 
    			// cout<<lev;
    			if(T->data.key==k) return T;
    			if(k > T->data.key){
    				T = T->lchild; //在左子树查找
    				lev++;
    			} else{
    				T = T->rchild; //在右子树查找
    				lev++;
    			}
    			// cout<<lev;
    		}
    		// cout<<"end";
    	// return T;
    	return NULL;
    
    } // Searchlev
    //算法7.5 二叉排序树的插入
    
    
    
    // int  Level(BSTree T,int k){
    // 	int height=0;
    // 		k++;
    // 	if(!T)
    // 		return 0;
    // 	while (T){
    
    // 		if(T->data.key==k){
    // 			height++;
    // 			break;
    // 		}
    // 		else if(T->data.key>k){
    // 			height++;
    // 			T=T->lchild;
    // 		}
    // 		else{
    // 			height++;
    // 			T=T->rchild;
    // 		}
    // 	}
    // 	return height;
    // }
    
    void InsertBST(BSTree &T, ElemType e)
    {
    	//当二叉排序树T中不存在关键字等于e.key的数据元素时,则插入该元素
    	if (!T)
    	{								  //找到插入位置,递归结束
    		BSTree S = new BSTNode;		  //生成新结点*S
    		S->data = e;				  //新结点*S的数据域置为e
    		S->lchild = S->rchild = NULL; //新结点*S作为叶子结点
    		T = S;						  //把新结点*S链接到已找到的插入位置
    	}
    	else if (e.key < T->data.key)
    		InsertBST(T->lchild, e); //将*S插入左子树
    	else if (e.key > T->data.key)
    		InsertBST(T->rchild, e); //将*S插入右子树
    } // InsertBST
    
    //算法7.6 二叉排序树的创建
    void CreateBST(BSTree &T)
    {
    	//依次读入一个关键字为key的结点,将此结点插入二叉排序树T中
    	T = NULL;
    	ElemType e;
    	cin >> e.key; //???
    	while (e.key != ENDFLAG)
    	{					 //ENDFLAG为自定义常量,作为输入结束标志
    		InsertBST(T, e); //将此结点插入二叉排序树T中
    		cin >> e.key;	//???
    	}					 //while
    } //CreatBST
    
    void DeleteBST(BSTree &T, int key)
    {
    	//从二叉排序树T中删除关键字等于key的结点
    	BSTree p = T;
    	BSTree f = NULL; //初始化
    	BSTree q;
    	BSTree s;
    	/*------------下面的while循环从根开始查找关键字等于key的结点*p-------------*/
    	while (p)
    	{
    		if (p->data.key == key)
    			break; //找到关键字等于key的结点*p,结束循环
    		f = p;	 //*f为*p的双亲结点
    		if (p->data.key > key)
    			p = p->lchild; //在*p的左子树中继续查找
    		else
    			p = p->rchild; //在*p的右子树中继续查找
    	}					   //while
    	if (!p)
    		return; //找不到被删结点则返回
    	/*―考虑三种情况实现p所指子树内部的处理:*p左右子树均不空、无右子树、无左子树―*/
    	if ((p->lchild) && (p->rchild))
    	{ //被删结点*p左右子树均不空
    		q = p;
    		s = p->lchild;
    		while (s->rchild) //在*p的左子树中继续查找其前驱结点,即最右下结点
    		{
    			q = s;
    			s = s->rchild;
    		}				   //向右到尽头
    		p->data = s->data; //s指向被删结点的“前驱”
    		if (q != p)
    		{
    			q->rchild = s->lchild; //重接*q的右子树
    		}
    		else
    			q->lchild = s->lchild; //重接*q的左子树
    		delete s;
    	} //if
    	else
    	{
    		if (!p->rchild)
    		{ //被删结点*p无右子树,只需重接其左子树
    			q = p;
    			p = p->lchild;
    		} //else if
    		else if (!p->lchild)
    		{ //被删结点*p无左子树,只需重接其右子树
    			q = p;
    			p = p->rchild;
    		} //else if
    		  /*――――――――――将p所指的子树挂接到其双亲结点*f相应的位置――――――――*/
    		if (!f)
    			T = p; //被删结点为根结点
    		else if (q == f->lchild)
    			f->lchild = p; //挂接到*f的左子树位置
    		else
    			f->rchild = p; //挂接到*f的右子树位置
    		delete q;
    	}
    } //DeleteBST
    
    //算法 7.7 二叉排序树的删除
    
    //中序遍历
    void InOrderTraverse(BSTree &T)
    {
    	if (T)
    	{
    		InOrderTraverse(T->lchild);
    		cout << T->data.key << " ";
    		InOrderTraverse(T->rchild);
    	}
    }
    int predt=0;
    int judgeBST(BSTree T)
    {
    	int b1, b2;
    	if(T == NULL){
    		return 1;
    	}
    	else{
    		b1 = judgeBST(T->lchild);
    		if(b1 == 0 || predt > T->data.key) return 0;
    		predt = T->data.key;
    		b2 = judgeBST(T->rchild);
    		return b2;
    	}
    }
    
    int main()
    {
    	BSTree T;
    	int lev = 0;
    	cout << "请输入若干整数,用空格分开,以-1结束输入" << endl;
    	CreateBST(T);
    	cout << "当前有序二叉树中序遍历结果为" << endl;
    	InOrderTraverse(T);
    	cout << endl;
    	int key; //待查找或待删除内容
    	cout << "请输入待查找关键字(整数)" << endl;
    	cin >> key;
    	BSTree result = SearchBST(T, key);
    	// int a=result->data.key;
    	// cout<<"fghj"<< a;
    	// }
    	//求层数方法一
    	result = Searchlev(T, key, lev);
    	//方求层数法二
    //    lev=Level(T,key);//没判断是否有这个节点,下面的result不用取非,建议用第一种
    
    	if (!result)//这要取非
    	{
    		cout << "找到关键字" << key << "在" << lev << "层" << endl;
    	}
    	else
    	{
    		cout << "未找到" << key << endl;
    	}
    	//Searchpath( T, key);cout<<endl;
    	cout << "请输入待删除的关键字" << endl;
    	cin >> key;
    	DeleteBST(T, key);
    	cout << "当前有序二叉树中序遍历结果为" << endl;
    	InOrderTraverse(T);
    	if(judgeBST(T))
    	   cout<<" 是一棵排序树"<<endl;
    	else
    	  cout<<" 不是一棵排序树"<<endl;
    	return 1;
    }
    
    
    ♪(^∇^*)♪(^∇^*)(~ ̄▽ ̄)~有没有感觉很棒呀!!!(#^.^#),(*^▽^*)O(∩_∩)O哈哈~
  • 相关阅读:
    Java HashMap存储问题
    <转>堆和栈的区别
    Linux shell命令
    DNS(三)DNS SEC(域名系统安全扩展)
    DNS (二)协议
    绕过CDN查找网站真实IP方法
    stream流思想应用
    http接口实现附件对接
    AQS深入分析
    AQS快速入门
  • 原文地址:https://www.cnblogs.com/ygjzs/p/12062186.html
Copyright © 2020-2023  润新知