• HDU 1565 1569 方格取数(最大点权独立集)


    HDU 1565 1569 方格取数(最大点权独立集)

    题目链接

    题意:中文题

    思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流

    那么原图周围不能连边,那么就能够分成黑白棋盘。源点连向黑点。白点连向汇点,容量都为点容量。然后黑白之间相邻的就连一条容量无限大的边

    代码:

    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <algorithm>
    using namespace std;
    
    const int MAXNODE = 2505;
    const int MAXEDGE = 100005;
    
    typedef int Type;
    const Type INF = 0x3f3f3f3f;
    
    struct Edge {
    	int u, v;
    	Type cap, flow;
    	Edge() {}
    	Edge(int u, int v, Type cap, Type flow) {
    		this->u = u;
    		this->v = v;
    		this->cap = cap;
    		this->flow = flow;
    	}
    };
    
    struct Dinic {
    	int n, m, s, t;
    	Edge edges[MAXEDGE];
    	int first[MAXNODE];
    	int next[MAXEDGE];
    	bool vis[MAXNODE];
    	Type d[MAXNODE];
    	int cur[MAXNODE];
    	vector<int> cut;
    
    	void init(int n) {
    		this->n = n;
    		memset(first, -1, sizeof(first));
    		m = 0;
    	}
    	void add_Edge(int u, int v, Type cap) {
    		edges[m] = Edge(u, v, cap, 0);
    		next[m] = first[u];
    		first[u] = m++;
    		edges[m] = Edge(v, u, 0, 0);
    		next[m] = first[v];
    		first[v] = m++;
    	}
    
    	bool bfs() {
    		memset(vis, false, sizeof(vis));
    		queue<int> Q;
    		Q.push(s);
    		d[s] = 0;
    		vis[s] = true;
    		while (!Q.empty()) {
    			int u = Q.front(); Q.pop();
    			for (int i = first[u]; i != -1; i = next[i]) {
    				Edge& e = edges[i];
    				if (!vis[e.v] && e.cap > e.flow) {
    					vis[e.v] = true;
    					d[e.v] = d[u] + 1;
    					Q.push(e.v);
    				}
    			}
    		}
    		return vis[t];
    	}
    
    	Type dfs(int u, Type a) {
    		if (u == t || a == 0) return a;
    		Type flow = 0, f;
    		for (int &i = cur[u]; i != -1; i = next[i]) {
    			Edge& e = edges[i];
    			if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) {
    				e.flow += f;
    				edges[i^1].flow -= f;
    				flow += f;
    				a -= f;
    				if (a == 0) break;
    			}
    		}
    		return flow;
    	}
    
    	Type Maxflow(int s, int t) {
    		this->s = s; this->t = t;
    		Type flow = 0;
    		while (bfs()) {
    			for (int i = 0; i < n; i++)
    				cur[i] = first[i];
    			flow += dfs(s, INF);
    		}
    		return flow;
    	}
    
    	void MinCut() {
    		cut.clear();
    		for (int i = 0; i < m; i += 2) {
    			if (vis[edges[i].u] && !vis[edges[i].v])
    				cut.push_back(i);
    		}
    	}
    } gao;
    
    const int N = 55;
    const int d[4][2] = {0, 1, 0, -1, 1, 0, -1, 0};
    
    int n, m, g[N][N], sum;
    
    int main() {
    	while (~scanf("%d%d", &n, &m)) {
    		sum = 0;
    		for (int i = 0; i < n; i++)
    			for (int j = 0; j < m; j++) {
    				scanf("%d", &g[i][j]);
    				sum += g[i][j];
    			}
    		gao.init(n * m + 2);
    		for (int i = 0; i < n; i++) {
    			for (int j = 0; j < m; j++) {
    				if ((i + j) % 2 == 0) {
    					gao.add_Edge(0, i * m + j + 1, g[i][j]);
    					for (int k = 0; k < 4; k++) {
    						int x = i + d[k][0];
    						int y = j + d[k][1];
    						if (x < 0 || x >= n || y < 0 || y >= m) continue;
    						gao.add_Edge(i * m + j + 1, x * m + y + 1, g[i][j] + g[x][y]);
    					}
    				} else gao.add_Edge(i * m + j + 1, n * m + 1, g[i][j]);
    			}
    		}
    		printf("%d
    ", sum - gao.Maxflow(0, n * m + 1));
    	}
    	return 0;
    }


  • 相关阅读:
    栈大小和内存分部问题
    inline和宏之间的区别
    两个栈实现双端队列
    Hibernate学习笔记-Hibernate关系映射
    Hibernate学习笔记-Hibernate HQL查询
    Hibernate学习笔记--第一个Hibernate框架程序
    Hibernate学习笔记--Hibernate框架错误集合及解决
    Java学习笔记--对象克隆
    Scala学习笔记--文件IO
    Java学习笔记--Socket和ServerSocket
  • 原文地址:https://www.cnblogs.com/yfceshi/p/6758838.html
Copyright © 2020-2023  润新知