• Analysis by Its History Exercise 2.4


    (Bernoulli's inequality;Jac.Bernoulli 1689,see 1744,Opera,p.380;Barrow 1670,see 1860,Works,Lectio VII,XIII,p.224).By induction on $n$,prove that
    1.\begin{equation}
    \label{eq:1.18}
    (1+a)^n\geq 1+na ~~ \mbox{for}~~ a\geq -1,n=0,1,2,\cdots
    \end{equation}

    Proof:When $n=0$,$1=1$.Suppose when $n=k(k\geq 0)$,the inequality also hold.That is
    \begin{equation}
    \label{eq:1.39}
    (1+a)^k\geq 1+ka
    \end{equation}
    Then
    \begin{equation}
    \label{eq:1.41}
    (1+a)^{k+1}=(1+a)^k(1+a)\geq (1+ka)(1+a)=1+ka+a+ka^2\geq 1+(k+1)a
    \end{equation}

    Done.

    2.\begin{equation}
    \label{eq:1.55}
    1-na<(1-a)^n<\frac{1}{1+na}~~\mbox{for}~~0<a<1,n=2,3,\cdots
    \end{equation}

    Proof:
    \begin{equation}
    \label{eq:2.44}
    \frac{1-(1-a)^n}{a}<n
    \end{equation}

    Let $f(x)=x^n$.According to the differential mean value theorem,we just need to prove that when $0<x<1$,
    \begin{equation}
    f'(x)=nx^{n-1}<n
    \end{equation}
    This is obvious.

    Now I prove
    \begin{equation}
    (1-a)^n<\frac{1}{1+na}
    \end{equation}
    Let $a=\frac{1}{k}$.We just need to prove that
    \begin{equation}
    (1+\frac{1}{k-1})^n>1+\frac{n}{k}
    \end{equation}
    This is true because
    \begin{equation}
    \label{eq:'}
    (1+\frac{1}{k-1})^n\geq 1+\frac{n}{k-1}>1+\frac{n}{k}
    \end{equation}

  • 相关阅读:
    oracle去除字符串中间的空格
    java代理模式
    js方法中的this
    js中访问对象的方法
    Hadoop学习笔记
    查看电脑硬件常用命令
    Ubuntu18.0.4配置Hadoop1.2.1环境
    Entwurfsmuster
    WEB Front-end Development Technology
    Objekt Orientierte Programmierung C++
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828147.html
Copyright © 2020-2023  润新知