• Prove Cauchy's inequality by induction


    Cauchy’s inequality:If $x_i,y_i(1\leq i\leq n)$ are non-negative real numbers,then

    $$(x_1y_1+\cdots+x_ny_n)^2\leq (x_1^2+\cdots+x_n^2)(y_1^2+\dots+y_n^2)$$

    The equality holds if and only if $(x_1,\cdots ,x_n)$ and ${(y_1,\cdots ,y_n)}$ are linearly dependent.


    Proof:When ${n=1}$,the inequality obviously holds.And it is easy to verify that ${x_1}$ and ${y_1}$ are linearly dependent.Suppose when ${n=k}$,the inequality holds,that is

    $$(x_1y_1+\cdots +x_ky_k)^2\leq (x_1^2+\cdots +x_k^2)(y_1^2+\cdots +y_k^2)$$

    And the equality holds if and only if ${(x_1,\cdots,x_k)}$ and ${(y_1,\cdots,y_k)}$ are linearly dependent.In case of ${n=k+1}$,


    \begin{align*}(x_1y_1+\cdots +x_ky_k+x_{k+1}y_{k+1})^2&=(x_1y_1+\cdots +x_ky_k)^2+2x_{k+1}y_{k+1}(x_1y_1+\cdots+ x_ky_k)+(x_{k+1}y_{k+1})^2\\&\leq (x_1^2+\cdots +x_k^2)(y_1^2+\cdots +y_k^2)+2x_{k+1}y_{k+1}(x_1y_1+\cdots +x_ky_k)+(x_{k+1}y_{k+1})^2\\&\leq (x_1^2+\cdots +x_k^2)(y_1^2+\cdots +y_k^2)+2x_{k+1}y_{k+1}\sqrt{(x_1^2 +\cdots +x_k^2)(y_1^2+\cdots +y_k^2)}+(x_{k+1}y_{k+1})^2\\&\leq (x_1^2+\cdots +x_k^2)(y_1^2+\cdots +y_k^2)+x_{k+1}^2(y_1^2+\cdots +y_k^2)+y_{k+1}^2(x_1^2+\cdots +x_k^2)+(x_{k+1}y_{k+1})^2\\&=(x_1^2+\cdots +x_{k+1}^2)(y_1^2+\cdots +y_{k+1}^2)\end{align*}


    The equality holds if and only if :

    • ${(x_1,\cdots,x_k)}$ and ${(y_1,\cdots,y_k)}$ are linearly dependent.
    • ${x_{k+1}\sqrt{y_1^2+\cdots +y_k^2}=y_{k+1}\sqrt{x_1^2+\cdots +x_k^2}}$

    ${(x_1,\cdots ,x_k)}$ and ${(y_1,\cdots ,y_k)}$ are linearly dependent,which means that ${a_1(x_1,\cdots ,x_k)+a_2(y_1,\cdots,y_k)=0}$ while ${a_1}$ or ${a_2}$ are not ${0}$,if ${a_1=0}$,then all of ${y_i(1\leq i\leq k)}$ are 0,so ${y_{k+1}=0}$ or all of ${x_i(1\leq i\leq k)}$ are 0,whatever the case,we can easily verify that ${(x_1,\cdots ,x_{k+1})}$ and ${(y_1,\cdots ,y_{k+1})}$ are linearly dependent.Similary,when ${a_2=0}$ ,we can get the same conclusion.When both ${a_1}$ and ${a_2}$ are not 0,then $${(x_1,\cdots,x_k)=\lambda (y_1,\cdots,y_k)(\lambda\neq 0)}$$so $${\frac{\sqrt{x_1^2+\cdots +x_k^2}}{\sqrt{y_1^2+\cdots +y_k^2}}=\lambda}$$ so $${\frac{x_{k+1}}{y_{k+1}}=\lambda }$$so ${(x_1,\cdots,x_{k+1})}$ and ${(y_1,\cdots,y_{k+1})}$ are linearly dependent.

    And,it is easy to verify that when ${(x_1,\cdots,x_n)}$ and ${(y_1,\cdots,y_n)}$ are linearly dependent,the equality holds.${\Box}$


    Now I’d like to talk about another point.Why ${x_i,y_i(1\leq i\leq n)}$ should be non-negative?In fact,this prerequisite is not necessary,because

    $$|x_1y_1+\cdots +x_ny_n|\leq |x_1||y_1|+\cdots +|x_n||y_n|$$

    The equality holds if and only if ${x_1y_1,\cdots,x_ny_n}$ are all non-negative or all negative.So,$${(x_1y_1+\cdots+x_ny_n)^2\leq (|x_1||y_1|+\cdots +|x_n||y_n|)^2\leq (x_1^2+\cdots+x_n^2)(y_1^2+\dots+y_n^2)}$$
    The equality holds iff :

    • ${(|x_1|,\cdots,|x_n|)}$ and ${(|y_1|,\cdots,|y_n|)}$ are linearly dependent.
    • ${x_1y_1,\cdots,x_ny_n}$ are all non-negative or all negative .

    It is easy to verify that the above two point is equivalent to this point: ${(x_1,\cdots,x_n)}$ and ${(y_1,\cdots,y_n)}$ are linearly dependent.

  • 相关阅读:
    Windows JScript 在 游览器 中运行 调试 Shell 文件系统
    autohotkey 符号链接 软连接 symbolink
    软链接 硬链接 测试
    SolidWorks 修改 基准面 标准坐标系
    手机 路径 WebDAV 映射 驱动器
    Win10上手机路径
    explorer 命令行
    单位公司 网络 封锁 屏蔽 深信 AC
    cobbler自动化部署原理篇
    Docker四种网络模式
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827760.html
Copyright © 2020-2023  润新知