• The remainder term of the $n+1$point closed NewtonCotes formula


    Suppose that $\sum_{i=0}^na_if(x_i)$ denotes the $n+1$-point closed Newton-Cotes formula with $x_0=a,x_n=b$,and $h=\frac{b-a}{n}$.There exists $\xi\in (a,b)$ for which
      \begin{align*}
        \int_a^bf(x)dx=\sum_{i=0}^na_if(x_i)+\frac{h^{n+3}f^{(n+2)}(\xi)}{(n+2)!}\int_0^nt^2(t-1)\cdots (t-n)dt
      \end{align*}
    if $n$ is even and $f\in C^{n+2}[a,b]$,and
    \begin{align*}
      \int_a^bf(x)dx=\sum_{i=0}^na_if(x_i)+\frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!}\int_0^nt(t-1)\cdots (t-n)dt
    \end{align*}
    if $n$ is odd and $f\in C^{n+1}[a,b]$.



    Proof:We first study the relation between $\int_0^nt(t-1)\cdots (t-n)dt$ and $\int_{x_0}^{x_n}(x-x_0)(x-x_1)\cdots (x-x_n)dx$.It is easy to verify that
    \begin{align*}
      \int_0^{nh}x(x-h)\cdots (x-nh)dx=h^{n+2}\int_0^nx(x-1)\cdots (x-n)dx
    \end{align*}

    And it is also easy to verify that
    \begin{align*}
      \int_0^{nh}x(x-h)\cdots
      (x-nh)dx=\int_{x_0}^{x_n}(x-x_0)(x-x_1)\cdots (x-x_n)dx
    \end{align*}
    So when $n$ is odd and $f\in C^{n+1}[a,b]$,we just need to prove that

    \begin{align*}
      \int_{x_0}^{x_n}f(x)dx=\sum_{i=0}^na_if(x_i)+\frac{f^{(n+1)}(\xi)}{(n+1)!}\int_{x_0}^{x_n}(x-x_0)(x-x_1)\cdots (x-x_n)dx
    \end{align*}
    So we just need to prove that

    \begin{align*}
      \int_{x_0}^{x_n}[f(x)-\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots
      (x-x_n)]dx=\sum_{i=0}^na_if(x_i)
    \end{align*}
    This is true according to the remainder of the Newton interpolation.




    Now let's see the relation between $\int_0^nt^2(t-1)\cdots (t-n)dt$ and $\int_{x_0}^{x_n}(x-x_0)^2(x-x_1)\cdots (x-x_n)dx$.It is easy to verify that
    \begin{align*}
      \int_{x_0}^{x_n}(x-x_0)^2(x-x_1)\cdots
      (x-x_n)dx=\int_0^{nh}x^2(x-h)\cdots (x-nh)dx
    \end{align*}
    So we just need to investigate the relation between
    \begin{align*}
      \int_0^nx^2(x-1)\cdots (x-n)dx
    \end{align*}
    and
    \begin{align*}
      \int_0^{nh}x^2(x-h)\cdots (x-nh)dx
    \end{align*}
    Let
    \begin{align*}
      p=\frac{x}{h}
    \end{align*}
    Then
    \begin{align*}
      \int_0^{nh}x^2(x-h)\cdots (x-nh)dx=\int_0^n (ph)^2(ph-nh)\cdots
      (ph-nh)dx=h^{n+3}\int_0^np^2(p-1)\cdots (p-n)dp
    \end{align*}

    So we just need to prove that

    \begin{align*}
     \int_a^b[f(x)-\frac{f^{(n+2)}(\xi)}{(n+2)!}x^2(x-1)\cdots (x-n)]dx=\sum_{i=0}^na_if(x_i)
    \end{align*}

    This is true according to the remainder term of the Hermite interpolation.

  • 相关阅读:
    【前端】用百度BAE和express部署自己的node后台
    【前端】JavaScript中prototype和__proto__的区别
    【其他】Objective-C 内存管理学习总结
    【Unity3D】Unity3D 让角色的头部望向鼠标
    【Unity3D】Unity3D 摄像机带透明截图
    【前端】前端冷知识
    【Unity3D】Unity3D SkinnedMeshRenderer换装系统
    【前端】HTML中最适合做按钮的元素
    IEnumerable和IEnumerator 详解 分类: C# 2014-12-05 11:47 18人阅读 评论(0) 收藏
    LINQ to Entities
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827541.html
Copyright © 2020-2023  润新知