• NEURAL NETWORKS神经网络(pytorch官网60分钟闪电战第三节)


    import torch
    import torch.nn as nn
    import torch.nn.functional as f
    import torch.optim as optim
    

    一、Define the network定义网络

    class Net(nn.Module):
    
        def __init__(self):
            super(Net, self).__init__()
            # 1 input image channel, 6 output channels, 3x3 square convolution
            # kernel
            self.conv1 = nn.Conv2d(1, 6, 3)
            self.conv2 = nn.Conv2d(6, 16, 3)
            # an affine operation: y = Wx + b
            self.fc1 = nn.Linear(16 * 6 * 6, 120)  # 6*6 from image dimension图像尺寸
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
    
        def forward(self, x):
            x = f.max_pool2d(f.relu(self.conv1(x)), (2, 2))
            # If the size is a square you can only specify a single number
            # 如果大小为正方形,则只能指定单个数字
            x = f.max_pool2d(f.relu(self.conv2(x)), 2)
            x = x.view(-1, self.num_flat_features(x))
            x = f.relu(self.fc1(x))
            x = f.relu(self.fc2(x))
            x = self.fc3(x)
            return x
    
        def num_flat_features(self, x):
            # all dimensions except the batch dimension除批次维度外的所有维度
            size = x.size()[1:]
            num_features = 1
            for s in size:
                num_features *= s
            return num_features
    
    net = Net()
    print(net)
    

    只需要定义forward函数,backward就可以使用自动定义函数(计算梯度)autograd,可以在forward函数中使用任何Tensor操作。
    模型的可学习参数由net.parameters()返回

    params = list(net.parameters())
    print(params)
    print(len(params))
    print(params[0].size())  # conv1's .weight
    
    # randn[1, 1, 32, 32]表示:批次大小batch_size=1, 1通道(灰度图像),图片尺寸:32x32
    input = torch.randn(1, 1, 32, 32)
    out = net(input)
    print(out)
    
    # 用随机梯度将所有参数和反向传播器的梯度缓冲区归零
    net.zero_grad()
    out.backward(torch.randn(1, 10))
    

    二、Loss Function损失函数

    output = net(input)
    target = torch.randn(10)  # a dummy target, for example
    target = target.view(1, -1)  # make it the same shape as output
    criterion = nn.MSELoss()  # 一个简单的损失是:nn.MSELoss计算输入和目标之间的均方误差
    
    loss = criterion(output, target)
    print(loss)
    
    print(loss.grad_fn)  # MSELoss
    print(loss.grad_fn.next_functions[0][0])  # Linear
    print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU
    

    上面这个顺序不是很能理解,可以参考官网再研究一下

    三、Backprop 反向传播

    net.zero_grad()     # zeroes the gradient buffers of all parameters
    
    print('conv1.bias.grad before backward')
    print(net.conv1.bias.grad)
    
    loss.backward()
    
    print('conv1.bias.grad after backward')
    print(net.conv1.bias.grad)
    

    四、Update the weights 更新权重

    learning_rate = 0.01
    for f in net.parameters():
        f.data.sub_(f.grad.data * learning_rate)
    

    但是,在使用神经网络时,需要使用各种不同的更新规则,例如SGD,Nesterov-SGD,Adam,RMSProp等。为实现此目的,pytorch构建了一个小程序包:torch.optim实现所有这些方法。使用它非常简单:

    # create your optimizer创建优化器
    optimizer = optim.SGD(net.parameters(), lr=0.01)
    
    # in your training loop:训练回路
    optimizer.zero_grad()   # zero the gradient buffers将梯度缓冲区设置为零
    output = net(input)
    loss = criterion(output, target) # 如果从头开始写,这里的criterion是nn.MSELoss(),在第二部分损失函数给出
    loss.backward()
    optimizer.step()    # Does the update
    
  • 相关阅读:
    node.js中常用的fs文件系统
    秒懂 this
    Filter 过滤器
    Ubuntu 安装zookeeper
    Vmware 设置NAT模式
    TreeMap
    ArrayList扩容
    Java 面试题收集
    SwitchyOmega 设置修改代理
    Jedis操作Redis
  • 原文地址:https://www.cnblogs.com/ycycn/p/13788358.html
Copyright © 2020-2023  润新知