• 如何用redis正确实现分布式锁?


    先把结论抛出来:redis无法正确实现分布式锁!即使是redis单节点也不行!redis的所谓分布式锁无法用在对锁要求严格的场景下,比如:同一个时间点只能有一个客户端获取锁。

    首先来看下单节点下一般redis分布式锁的实现,其实就是个set:

    加锁:

     /**
         * 尝试获取分布式锁
         * @param jedis Redis客户端
         * @param lockKey 锁
         * @param requestId 请求标识
         * @param expireTime 超期时间
         * @return 是否获取成功
         */
        public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
            String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
            if (LOCK_SUCCESS.equals(result)) {
                return true;
            }
            return false;
        }
     

    可以看到,加锁其实就一行代码:jedis.set(String key, String value, String nxxx, String expx, int time),这个set()方法一共有五个参数:

    (1)第一个为key,我们使用key来当锁,因为key是唯一的。

    (2)第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是我们在上面讲到可靠性时,分布式锁要满足第四个条件解铃还须系铃人,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。requestId可以使用UUID.randomUUID().toString()方法生成。

    (3)第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;

    (4)第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。

    (5)第五个为time,与第四个参数相呼应,代表key的过期时间

    解锁:

    /**
         * 释放分布式锁
         * @param jedis Redis客户端
         * @param lockKey 锁
         * @param requestId 请求标识
         * @return 是否释放成功
         */
        public static boolean releaseDistributedLock(Jedis jedis, String lockKey, String requestId) {
            String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
            Object result = jedis.eval(script, Collections.singletonList(lockKey), Collections.singletonList(requestId));
            if (RELEASE_SUCCESS.equals(result)) {
                return true;
            }
            return false;
        }

    解锁也很简单,只需要两行代码就搞定了!第一行代码,我们写了一个简单的Lua脚本代码,第二行代码,我们将Lua代码传到jedis.eval()方法里,并使参数KEYS[1]赋值为lockKey,ARGV[1]赋值为requestId。eval()方法是将Lua代码交给Redis服务端执行,首先获取锁对应的value值,检查是否与requestId相等,如果相等则删除锁(解锁)。使用Lua语言主要是确保上述操作是原子性的。

    看上去似乎是完美无瑕的一种分布式锁的实现方式,我们重新看下加锁的代码:

    public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
            String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
            if (LOCK_SUCCESS.equals(result)) {
                return true;
            }
            return false;
        }

    场景1:

    线程1在执行set的时候,redis服务端已经执行成功,但是因为网络原因,响应还没有返回给客户端,过了expireTime时间以后,响应终于回来了,对于线程1来说,它是拿到了分布式锁的,但是注意,此时的锁已经是失效的了!如果此时又来个线程2申请加锁,显然也能获取锁,因为线程1的锁已经失效了,此时就会有2个线程同时获取锁!

    场景2:

    线程1执行完set以后,redis服务端执行成功,在执行if的时候,jvm发生了FullGC,应用暂停,超过了expireTime以后,GC完成,程序继续执行,此时线程1仍然认为自己是持有锁的,实际上锁已经过期了!如果此时线程2又来申请加锁,成功,此时线程2也获得了锁,因此也会出现2个线程同时执行被锁保护的代码的情况!

    综上,可以看出来,就算是在单节点情况下,redis也是无法实现严格意义上的分布式锁的!

    如果想要实现严格意义上的分布式锁呢?最常用的就是zookeeper了。我们来看下zookeeper为啥可以实现分布式锁。

    zookeeper实现分布式锁的步骤:

    假设锁空间的根节点为/lock:

    (1)客户端连接zookeeper,并在/lock下创建临时的且有序的子节点,第一个客户端对应的子节点为/lock/lock-0000000000,第二个为/lock/lock-0000000001,以此类推。

    (2)客户端获取/lock下的子节点列表,判断自己创建的子节点是否为当前子节点列表中序号最小的子节点,如果是则认为获得锁,否则监听/lock的子节点变更消息,获得子节点变更通知后重复此步骤直至获得锁;

    (3)执行业务代码;

    (4)完成业务流程后,删除对应的子节点释放锁。

    上面的步骤可以看出来,zookeeper跟redis不一样,它是完全不依赖客户端的状态的,因此zookeeper才可以严格实现分布式锁!

    redis的分布式锁是不是就一无是处了呢?当然不是!在一些要求不是那么严格的场景下还是可以使用的,比如:凌晨1点执行定时任务出报表,哪怕是执行2次也没什么问题。

    参考文献:

    https://www.cnblogs.com/linjiqin/p/8003838.html

    http://zhangtielei.com/posts/blog-redlock-reasoning.html

    https://blog.csdn.net/qiangcuo6087/article/details/79067136

  • 相关阅读:
    8年开发大佬告诉你:看懂英文文档,每天只需要10分钟做这件事……
    扫雷与算法:如何随机化的布雷(二)之洗牌算法
    推荐一个项目:数据结构和算法必知必会的 50 个代码实现
    你知道什么是漂亮排序法吗?哦,知道,不就是臭皮匠排序法嘛!
    什么是漂亮排序算法:一顿操作很装逼,一看性能二点七
    什么是哈希洪水攻击(HashFlooding Attack)?
    五分钟了解一下什么是「贪心算法 」
    高考前一天,六月六号,加一!
    毕业十年后,我忍不住出了一份程序员的高考试卷
    二分查找算法详解
  • 原文地址:https://www.cnblogs.com/yaphetsfang/p/12069042.html
Copyright © 2020-2023  润新知