• 行列式的向量形式


    行列式的向量形式

    行列式公式

    [|A| = egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n}\ a_{21} & a_{22} & cdots & a_{2n}\ vdots & vdots & ddots & vdots\ a_{n1} & a_{n2} & cdots & a_{nn}\ end{vmatrix}]

    行向量表示

    (alpha_i = (a_{i1} , a_{i2} , cdots , a_{in}), iin(1,2,cdots,n)), 则行列式可以表示为

    [|A| = egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n}\ a_{21} & a_{22} & cdots & a_{2n}\ vdots & vdots & ddots & vdots\ a_{n1} & a_{n2} & cdots & a_{nn}\ end{vmatrix} = egin{vmatrix} alpha_1 \ alpha_2 \ vdots \ alpha_n end{vmatrix}]

    性质2(0向量)

    [|A|= egin{vmatrix} alpha_1 \ vdots \ 0 \ vdots \ alpha_n end{vmatrix} =0]

    性质3(某一向量的倍数)

    [|B|= egin{vmatrix} alpha_1 \ vdots \ calpha_i \ vdots \ alpha_n end{vmatrix} =cegin{vmatrix} alpha_1 \ vdots \ alpha_i \ vdots \ alpha_n end{vmatrix} = c|A|]

    性质4(两行互换)

    [|B|= egin{vmatrix} alpha_1 \ vdots \ alpha_j \ vdots \ alpha_i \ vdots \ alpha_n end{vmatrix} = -egin{vmatrix} alpha_1 \ vdots \ alpha_i \ vdots \ alpha_j \ vdots \ alpha_n end{vmatrix} = -|A|]

    性质5(向量加法c=a+b)

    [|C|= egin{vmatrix} alpha_1 \ vdots \ a+b \ vdots \ alpha_n end{vmatrix} =egin{vmatrix} alpha_1 \ vdots \ a \ vdots \ alpha_n end{vmatrix} +egin{vmatrix} alpha_1 \ vdots \ b \ vdots \ alpha_n end{vmatrix} =|A|+|B|]

    性质6(两行成比例)

    [|B|= egin{vmatrix} alpha_1 \ vdots \ a \ vdots \ ca \ vdots \ alpha_n end{vmatrix} = cegin{vmatrix} alpha_1 \ vdots \ a \ vdots \ a \ vdots \ alpha_n end{vmatrix} = 0]

    性质7(倍加)

    [|B|= egin{vmatrix} alpha_1 \ vdots \ a \ vdots \ ca+b \ vdots \ alpha_n end{vmatrix} = egin{vmatrix} alpha_1 \ vdots \ a \ vdots \ ca \ vdots \ alpha_n end{vmatrix} + egin{vmatrix} alpha_1 \ vdots \ a \ vdots \ b \ vdots \ alpha_n end{vmatrix} = |A|]

    列向量表示

    (eta_i = egin{pmatrix}a_{1i} \ a_{2i} \ vdots \ a_{ni}end{pmatrix}, iin(1,2,cdots,n)), 则行列式可以表示为

    [|A| = egin{vmatrix} a_{11} & a_{12} & cdots & a_{1n}\ a_{21} & a_{22} & cdots & a_{2n}\ vdots & vdots & ddots & vdots\ a_{n1} & a_{n2} & cdots & a_{nn}\ end{vmatrix} = egin{vmatrix} eta_1 & eta_2 & cdots & eta_n end{vmatrix}]

    性质2(0向量)

    [|A|= egin{vmatrix} eta_1 & cdots & 0 & cdots & eta_n end{vmatrix} =0]

    性质3(某一向量的倍数)

    [|B|= egin{vmatrix} eta_1 & cdots & ceta_i & cdots & eta_n end{vmatrix} ]

    [=cegin{vmatrix} eta_1 & cdots & eta_i & cdots & eta_n end{vmatrix} ]

    [= c|A| ]

    性质4(两行互换)

    [|B|= egin{vmatrix} eta_1 & cdots & eta_j & cdots & eta_i & cdots & eta_n end{vmatrix}]

    [= -egin{vmatrix} eta_1 & cdots & eta_i & cdots & eta_j & cdots & eta_n end{vmatrix} ]

    [= -|A| ]

    性质5(向量加法c=a+b)

    [|C|= egin{vmatrix} eta_1 & cdots & a+b & cdots & eta_n end{vmatrix} ]

    [=egin{vmatrix} eta_1 & cdots & a & cdots & eta_n end{vmatrix} +egin{vmatrix} eta_1 & cdots & b & cdots & eta_n end{vmatrix} ]

    [=|A|+|B| ]

    性质6(两行成比例)

    [|B|= egin{vmatrix} eta_1 & cdots & a & cdots & ca & cdots & eta_n end{vmatrix} ]

    [= cegin{vmatrix} eta_1 & cdots & a & cdots & a & cdots & eta_n end{vmatrix} ]

    [= 0 ]

    性质7(倍加)

    [|B|= egin{vmatrix} eta_1 & cdots & a & cdots & ca+b & cdots & eta_n end{vmatrix} ]

    [= egin{vmatrix} eta_1 & cdots & a & cdots & ca & cdots & eta_n end{vmatrix} + egin{vmatrix} eta_1 & cdots & a & cdots & b & cdots & eta_n end{vmatrix} ]

    [= |A| ]

  • 相关阅读:
    CentOS中的环境变量配置文件
    SCVMM中Clone虚拟机失败显示Unsupported Cluster Configuration状态
    Windows Server 2012 虚拟化实战:SCVMM的安装和部署
    Windows Server 2012 虚拟化实战:网络(二)
    x86.zip
    音视频处理之PS封装的介绍与使用20180928
    界面编程之QT的数据库操作20180801
    界面编程之QT的线程20180731
    界面编程之QT的Socket通信20180730
    界面编程之QT的文件操作20180729
  • 原文地址:https://www.cnblogs.com/yaoyu126/p/12613435.html
Copyright © 2020-2023  润新知