1. 基于向量法的外心推导
作者: 姚彧
版本历史:
版本 | 日期 | 说明 |
---|---|---|
0.1 | 2019-05-28 | 创建文档 |
版权声明:本文为作者原创文章,博客地址:https://www.cnblogs.com/yaoyu126 未经作者允许不得转载。
1.1 原点三角形
假设在( riangle ABC)中, (A)点坐标为((0,0)),其余点坐标分别为(B(x_1,y_1),C(x_2,y_2)), 我们称( riangle ABC)为原点三角形。对于非原点三角形,可以对(A,B,C)都减去(A)点坐标,从而转化成原点三角形。在原点三角形( riangle ABC)中,设外心(P)坐标为((x,y))。
1.2 外心定义的向量性质
( riangle ABC)外心的定义为: 外心(P)到( riangle ABC)各顶点的距离相等,用向量表示为:
(|overrightarrow{PA}|=|overrightarrow{PB}|=|overrightarrow{PC}|)
由以上性质可得:
(left{egin{aligned} |overrightarrow{PA}|=|overrightarrow{PB}| Longrightarrow riangle ABP是等腰三角形 \ |overrightarrow{PA}|=|overrightarrow{PC}| Longrightarrow riangle ACP是等腰三角形 \ |overrightarrow{PB}|=|overrightarrow{PC}| Longrightarrow riangle BCP是等腰三角形 end{aligned} ight.)
一般的,在等腰三角形( riangle ABP)中,(overrightarrow{AP})在(overrightarrow{AB})上的投影为:
(cfrac{overrightarrow{AP}cdotoverrightarrow{AB}}{|overrightarrow{AB}|} = cfrac{|overrightarrow{AB}|}{2} Longrightarrow overrightarrow{AP}cdotoverrightarrow{AB} = cfrac{|overrightarrow{AB}|^2}{2})
因此,我们可以得到( riangle ABC)外接圆向量性质:
(left{egin{aligned} overrightarrow{AP}cdotoverrightarrow{AB} = cfrac{|overrightarrow{AB}|^2}{2} \ overrightarrow{AP}cdotoverrightarrow{AC} = cfrac{|overrightarrow{AC}|^2}{2} \ overrightarrow{BP}cdotoverrightarrow{BC} = cfrac{|overrightarrow{BC}|^2}{2} end{aligned} ight.) 式1
1.3 原点三角形外心坐标推导
由原点三角形( riangle ABC)定义可得:
(left{egin{aligned}
overrightarrow{AP} = (x,y) \
overrightarrow{AB} = (x_1,y_1)\
overrightarrow{AC} = (x_2,y_2)
end{aligned}
ight.)
由1.2中推导的外接圆向量性质,将上式代入取公式中的第1,2项,可得:
(left{egin{aligned}
(x,y)cdot(x_1,y_1) = cfrac{|(x_1,y_1)|^2}{2} \
(x,y)cdot(x_2,y_2) = cfrac{|(x_2,y_2)|^2}{2}
end{aligned}
ight.)
(Longrightarrowleft{egin{aligned}
x_1cdot x+y_1cdot y = cfrac{x_1^2+y_1^2}{2} \
x_2cdot x+y_2cdot y = cfrac{x_2^2+y_2^2}{2}
end{aligned}
ight.)
令(b_1=cfrac{x_1^2+y_1^2}{2}, b_2=cfrac{x_2^2+y_2^2}{2})
(Longrightarrowleft{egin{aligned} x_1cdot x+y_1cdot y = b_1 \ x_2cdot x+y_2cdot y = b_2 end{aligned} ight.)
上式可以使用线性方程Cramer法则求解,得:
(D=left|egin{array}{cccc} x_1 & y_1\ x_2 & y_2 end{array} ight| = x_1cdot y_2 - x_2cdot y_1)
(Longrightarrowleft{egin{aligned} x=cfrac{left|egin{array}{cccc} b_1 & y_1\ b_2 & y_2 end{array} ight|}{D} \ y = cfrac{left|egin{array}{cccc} x_1 & b_1\ x_2 & b_2 end{array} ight|}{D} end{aligned} ight.)
最终,我们得到了外心的坐标公式:
(Longrightarrowleft{egin{aligned} x=cfrac{b_1cdot y_2 - b_2cdot y_1}{D} \ y = cfrac{x_1cdot b_2 - x_2cdot b_1}{D} end{aligned} ight.) 式2
1.4 一般三角形外心坐标推导
对一般三角形( riangle A^{'}B^{'}C^{'}),顶点分别坐标为(A(x_0^{'},y_0^{'}),B(x_1^{'},y_1^{'}),C(x_2^{'},y_2^{'})),将各顶点坐标都减去(A)点坐标,得到原点三角形( riangle ABC)及其各顶点坐标(A(0,0),B(x_1,y_1),C(x_2,y_2))。
应用式2,我们得到了三角形外心坐标公式
(Longrightarrowleft{egin{aligned} x = cfrac{b_1cdot y_2 - b_2cdot y_1}{D}+(x_0^{'}-x_0) \ y = cfrac{x_1cdot b_2 - x_2cdot b_1}{D}+(y_0^{'}-y_0) end{aligned} ight.) 式3
2. 使用坐标法推导原点三角形外心
对原点三角形( riangle ABC),利用外接圆定义有:
(left{egin{aligned} x^2 + y^2 = (x_1 - x)^2 + (y_1 - y)^2\ x^2 + y^2 = (x_2 - x)^2 + (y_2 - y)^2 end{aligned} ight.)
(Rightarrowleft{egin{aligned} x^2 + y^2 = x_1^2 - 2x_1x + x^2 + y_1^2 - 2y_1y + y^2\ x^2 + y^2 = x_2^2 - 2x_2x + x^2 + y_2^2 - 2y_2y + y^2 end{aligned} ight.)
(Rightarrowleft{egin{aligned} 0 = x_1^2 - 2x_1x + y_1^2 - 2y_1y\ 0 = x_2^2 - 2x_2x + y_2^2 - 2y_2y end{aligned} ight.)
(Rightarrowleft{egin{aligned} 2x_1x + 2y_1y = x_1^2 + y_1^2\ 2x_2x + 2y_2y = x_2^2 + y_2^2 end{aligned} ight.)
(Rightarrowleft{egin{aligned} x_1cdot x + y_1cdot y = cfrac{x_1^2 + y_1^2}{2}\ x_2cdot x + y_2cdot y = cfrac{x_2^2 + y_2^2}{2} end{aligned} ight.)
到这里,得到了与向量法推导的一样的结果(♡)。