• Python & Numpy 教程(上)


    原英文教程网址:http://cs231n.github.io/python-numpy-tutorial/

    ------------------------------------------------------------------------------------------------

    该教程来自于 Justin Johnson

    我们将会使用Python编程语言来完成本课程(斯坦福大学cs231n)的所有作业。Python是一个伟大的通用编程语言,在一些流行库(numpy,scipy,matplotlib)的帮助下,它可以提供一个科学计算的强大环境。

    我们希望你们之中的大多数人已经有了使用Python和numpy的经验;其余的人,这个部分将作为一个速成课程,帮助你们掌握Python编程语言,并且使用Python来做科学计算。

    也许有些人有过matlab的使用经验,所以我们也推荐numpyfor matlab user

    你还可以找到 IPythonnotebook version of this tutorial here

     


    Python

    Python是一个高级、动态类型多范性编程语言。Python与伪代码很相似,它允许你使用非常少的代码来表达强大的思想。举个例子,下面是一个经典的快速排序算法的Python实现:

    def quicksort(arr):
        if len(arr) <= 1:
            return arr
        pivot = arr[len(arr) / 2]
        left = [x for x in arr if x < pivot]
        middle = [x for x in arr if x == pivot]
        right = [x for x in arr if x > pivot]
        return quicksort(left) + middle + quicksort(right)
        
    print quicksort([3,6,8,10,1,2,1])
    # Prints "[1, 1, 2, 3, 6, 8, 10]"


    Python版本

    目前有两种不同的Python支持版本——Python 2.7和Python 3.4。Python 3.0引入了很多向后不兼容的变化,所以使用2.7编写的代码在3.4下可能无法正常工作,反之亦然。这门课程使用的是Python 2.7。

    你可以通过在命令行运行 python --version 来查看Python版本。

     

    Basic data types

    与其他语言类似,Python有很多基本的数据类型,包括整型、浮点型、布尔型、字符串型。这些类型的表现与在其他编程语言中类似。

    Numbers:整数和浮点数与其他语言中类似:

    x = 3
    print type(x) # Prints "<type 'int'>"
    print x       # Prints "3"
    print x + 1   # Addition; prints "4"
    print x - 1   # Subtraction; prints "2"
    print x * 2   # Multiplication; prints "6"
    print x ** 2  # Exponentiation; prints "9"
    x += 1
    print x  # Prints "4"
    x *= 2
    print x  # Prints "8"
    y = 2.5
    print type(y) # Prints "<type 'float'>"
    print y, y + 1, y * 2, y ** 2 # Prints "2.5 3.5 5.0 6.25"
    

    与许多其他语言不同的是,Python没有一元增加(x++)和减少(x--)操作。

    Python也有内置的长整型和复杂数类型,你可以在相关文档中找到。

    Booleans:Python实现所有的布尔逻辑通用操作,但是它不使用符号(&&,II,etc),而是使用英文单词:

    t = True
    f = False
    print type(t) # Prints "<type 'bool'>"
    print t and f # Logical AND; prints "False"
    print t or f  # Logical OR; prints "True"
    print not t   # Logical NOT; prints "False"
    print t != f  # Logical XOR; prints "True"
    

    Strings:Python对字符串支持很好:

    hello = 'hello'   # String literals can use single quotes
    world = "world"   # or double quotes; it does not matter.
    print hello       # Prints "hello"
    print len(hello)  # String length; prints "5"
    hw = hello + ' ' + world  # String concatenation
    print hw  # prints "hello world"
    hw12 = '%s %s %d' % (hello, world, 12)  # sprintf style string formatting
    print hw12  # prints "hello world 12"
    

    字符串对象有很多有用的方法;例如:

    s = "hello"
    print s.capitalize()  # Capitalize a string; prints "Hello"
    print s.upper()       # Convert a string to uppercase; prints "HELLO"
    print s.rjust(7)      # Right-justify a string, padding with spaces; prints "  hello"
    print s.center(7)     # Center a string, padding with spaces; prints " hello "
    print s.replace('l', '(ell)')  # Replace all instances of one substring with another;
                                   # prints "he(ell)(ell)o"
    print '  world '.strip()  # Strip leading and trailing whitespace; prints "world"
    

    你可以在相关文档中找到string方法的列表。


    Containers

    Python包含一些内置的容器类型:lists(列表),dictionaries(字典), sets(集合), and tuples(元组)。

    Lists

    list是数组在Python中的等价物,但是它是可变大小的,且可以包含不同类型的元素:

    xs = [3, 1, 2]   # Create a list
    print xs, xs[2]  # Prints "[3, 1, 2] 2"
    print xs[-1]     # Negative indices count from the end of the list; prints "2"
    xs[2] = 'foo'    # Lists can contain elements of different types
    print xs         # Prints "[3, 1, 'foo']"
    xs.append('bar') # Add a new element to the end of the list
    print xs         # Prints "[3, 1, 'foo', 'bar']"
    x = xs.pop()     # Remove and return the last element of the list
    print x, xs      # Prints "bar [3, 1, 'foo']"
    

    实际上,你可以在官网文档中找到更多的关于lists的细节。

     

    Slicing:除了可以每次访问列表的一个元素,Python提供了简洁的语法来访问子列表;这就叫做slicing:

    nums = range(5)    # range is a built-in function that creates a list of integers
    print nums         # Prints "[0, 1, 2, 3, 4]"
    print nums[2:4]    # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
    print nums[2:]     # Get a slice from index 2 to the end; prints "[2, 3, 4]"
    print nums[:2]     # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
    print nums[:]      # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]"
    print nums[:-1]    # Slice indices can be negative; prints ["0, 1, 2, 3]"
    nums[2:4] = [8, 9] # Assign a new sublist to a slice
    print nums         # Prints "[0, 1, 8, 9, 4]"
    

    我们还会在numpy arrays上下文中看到slicing。

     

    Loops:你可以像这样循环遍历列表中的元素:

    animals = ['cat', 'dog', 'monkey']
    for animal in animals:
       print animal
    # Prints "cat", "dog","monkey", each on its own line.

    如果你想在循环体中访问每个元素的索引,可使用内置的 enumerate 函数:

    animals = ['cat', 'dog', 'monkey']
    for idx, animal in enumerate(animals):
        print '#%d: %s' % (idx + 1, animal)
    # Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line
    

    List comprehensions:编程的时候,经常会涉及到把数据从一个类型转换到另一个类型。举个简单的例子,考虑下面计算平方数的代码:
    nums = [0, 1, 2, 3, 4]
    squares = []
    for x in nums:
        squares.append(x ** 2)
    print squares   # Prints [0, 1, 4, 9, 16]
    

    list comprehensions 也可以包含条件:

    nums = [0, 1, 2, 3, 4]
    even_squares = [x ** 2 for x in nums if x %2 == 0]
    print even_squares  # Prints "[0, 4, 16]"

    Dictionaries

    一个字典存储了(key,value)对,这与Java中的Map或者Javascript中的object都很相似。你可以这样使用字典:

    d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
    print d['cat']       # Get an entry from a dictionary; prints "cute"
    print 'cat' in d     # Check if a dictionary has a given key; prints "True"
    d['fish'] = 'wet'    # Set an entry in a dictionary
    print d['fish']      # Prints "wet"
    # print d['monkey']  # KeyError: 'monkey' not a key of d
    print d.get('monkey', 'N/A')  # Get an element with a default; prints "N/A"
    print d.get('fish', 'N/A')    # Get an element with a default; prints "wet"
    del d['fish']        # Remove an element from a dictionary
    print d.get('fish', 'N/A') # "fish" is no longer a key; prints "N/A"
    

    官方文档中可以找到所有关于字典的知识。

     

    Loops:很容易对字典中的keys进行迭代:

    d = {'person': 2, 'cat': 4, 'spider': 8}
    for animal in d:
        legs = d[animal]
        print 'A %s has %d legs' % (animal, legs)
    # Prints "A person has 2 legs", "A spider has 8 legs", "A cat has 4 legs"
    

    如果想要访问keys和对应的values,可以使用iteritems 方法:

    d = {'person': 2, 'cat': 4, 'spider': 8}
    for animal, legs in d.iteritems():
        print 'A %s has %d legs' % (animal, legs)
    # Prints "A person has 2 legs", "A spider has 8 legs", "A cat has 4 legs"
    

    Dictionary comprehensions:这与list comprehensions是相似的,但是允许你方便地构建字典。例如:

    nums = [0, 1, 2, 3, 4]
    even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
    print even_num_to_square  # Prints "{0: 0, 2: 4, 4: 16}"
    

    Sets

    Set是不同元素的无序集合。下面是一个简单的例子:

    animals = {'cat', 'dog'}
    print 'cat' in animals   # Check if an element is in a set; prints "True"
    print 'fish' in animals  # prints "False"
    animals.add('fish')      # Add an element to a set
    print 'fish' in animals  # Prints "True"
    print len(animals)       # Number of elements in a set; prints "3"
    animals.add('cat')       # Adding an element that is already in the set does nothing
    print len(animals)       # Prints "3"
    animals.remove('cat')    # Remove an element from a set
    print len(animals)       # Prints "2"
    

    通常,你想要知道的所有关于sets的东西可以在官方文档中找到。


    Loops:set中的迭代与list中具有相同的语法;然而,由于sets是无序的,你不能对访问set中元素的顺序做出假设:

    animals = {'cat', 'dog', 'fish'}
    for idx, animal in enumerate(animals):
        print '#%d: %s' % (idx + 1, animal)
    # Prints "#1: fish", "#2: dog", "#3: cat"
    

    Set comprehensions:与dictionaries和lists类似,我们可以很容易地使用set comprehensions来构建sets:

    from math import sqrt
    nums = {int(sqrt(x)) for x in range(30)}
    print nums # Prints "set([0, 1, 2, 3, 4, 5])"

    Tuples

    一个tuple是一个(不可改变)有序值列表。Tuple在很多方面和list相似;最大的不同是tuples可以被用作字典的keys和sets的元素,但是lists却不能。这里是一个简单的例子:

    d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
    t = (5, 6)       # Create a tuple
    print type(t)    # Prints "<type 'tuple'>"
    print d[t]       # Prints "5"
    print d[(1, 2)]  # Prints "1"
    

    官方文档中有更多的关于tuple的例子。


    Functions

    Python函数使用def关键字来定义。例如:

    def sign(x):
        if x > 0:
            return 'positive'
        elif x < 0:
            return 'negative'
        else:
            return 'zero'
    
    for x in [-1, 0, 1]:
        print sign(x)
    # Prints "negative", "zero", "positive"
    

    我们经常会将函数定义为可选参数的,像这样:

    def hello(name, loud=False):
        if loud:
            print 'HELLO, %s!' % name.upper()
        else:
            print 'Hello, %s' % name
    
    hello('Bob') # Prints "Hello, Bob"
    hello('Fred', loud=True)  # Prints "HELLO, FRED!"
    

    更多的关于Python函数的内容请参考官方文档


     

    Classes

    Python中定义类的语法是简洁明了的:

    class Greeter(object):
        
        # Constructor
        def __init__(self, name):
            self.name = name  # Create an instance variable
            
        # Instance method
        def greet(self, loud=False):
            if loud:
                print 'HELLO, %s!' % self.name.upper()
            else:
                print 'Hello, %s' % self.name
            
    g = Greeter('Fred')  # Construct an instance of the Greeter class
    g.greet()            # Call an instance method; prints "Hello, Fred"
    g.greet(loud=True)   # Call an instance method; prints "HELLO, FRED!"
    

    同样可以在官方文档中找到更多的内容。



    ======================================

    关于Numpy和其他库的使用将会在下一篇中介绍。

  • 相关阅读:
    Linux 入门
    Java OOP——第五章 异常
    Java OOP——第七章 多线程
    Java OOP——第八章 File IO
    Java OOP——JAVA关键字与保留字说明及使用
    JQuery制作网页——第九章 表单验证
    JQuery制作网页——第八章 使用jQuery操作DOM
    JQuery制作网页—— 第七章 jQuery中的事件与动画
    JQuery制作网页—— 第六章 jQuery选择器
    腾讯的一版 类似于fullpage效果
  • 原文地址:https://www.cnblogs.com/yanhuiqingkong/p/7770053.html
Copyright © 2020-2023  润新知