• MapReduce编程之倒排索引


    任务要求:

    //输入文件格式

    18661629496 110

    13107702446 110

    1234567 120

    2345678 120

    987654 110

    2897839274 18661629496

    //输出文件格式格式

    11018661629496|13107702446|987654|18661629496|13107702446|987654|

    1201234567|2345678|1234567|2345678|

    186616294962897839274|2897839274|

    mapreduce程序编写:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    import java.io.IOException;
    import java.util.StringTokenizer;
     
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
     
    public class Test2 {
        enum Counter
        {
            LINESKIP,//记录出错的行
        }
        public static class Map extends Mapper<LongWritable, Text, Text, Text>{
     
     
            public void map(LongWritable key, Text value, Context context)
                    throws IOException, InterruptedException {
                 String line = value.toString();//读取源数据
                 try
                 {
                     //数据处理
                     String [] lineSplit = line.split(" ");//18661629496,110
                     String anum = lineSplit[0];
                     String bnum = lineSplit[1];  
                     //输出格式:110,18661629496               
                     context.write(new Text(bnum), new Text(anum));
                      
                 }
                 catch(ArrayIndexOutOfBoundsException e)
                 {
                     context.getCounter(Counter.LINESKIP).increment(1);//出错时计数器+1
                     return;
                 }
     
            }
        }
     
        public static class Reduce extends Reducer<Text, Text, Text, Text> {
     
            public void reduce(Text key, Iterable<Text> values, Context context)
                    throws IOException, InterruptedException {
                String valueString;
                String out="";
                for(Text value:values)
                {
                    valueString=value.toString();
                    out+=valueString+"|";
                }
                context.write(key, new Text(out));
            }
        }
     
        public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            if (args.length != 2) {
                System.err.println("请配置输入输出路径 ");
                System.exit(2);
            }
            //各种配置
            Job job = new Job(conf, "telephone ");//作业名称配置
            //类配置
            job.setJarByClass(Test2.class);
            job.setMapperClass(Map.class);
            job.setReducerClass(Reduce.class);
            //map输出格式配置
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
            //作业输出格式配置
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            //添加输入输出路径
            FileInputFormat.addInputPath(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            //任务完毕时退出
            System.exit(job.waitForCompletion(true) ? 0 1);
     
        }
     
    }


    将mapreduce程序打包为jar文件:

    1.右键项目名称->Export->java->jar file

    wKioL1VUYYzjA-ylAAF_0LIsLr0525.jpg


    2.配置jar文件存储位置

    wKioL1VUYamQxFdoAAGM0hfINFo653.jpg

    3.选择main calss

    wKiom1VUYG6BLj34AAG8CzMeGWU381.jpg

    4.执行jar文件

    [liuqingjie@master hadoop-0.20.2]$ bin/hadoop jar /home/liuqingjie/test2.jar /user/liuqingjie/in /user/liuqingjie/out

    15/05/14 01:46:47 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.

    15/05/14 01:46:47 INFO input.FileInputFormat: Total input paths to process : 2

    15/05/14 01:46:48 INFO mapred.JobClient: Running job: job_201505132004_0005

    15/05/14 01:46:49 INFO mapred.JobClient:  map 0% reduce 0%

    15/05/14 01:46:57 INFO mapred.JobClient:  map 100% reduce 0%

    15/05/14 01:47:09 INFO mapred.JobClient:  map 100% reduce 100%

    ……………………………………………………………………………………

    查看结果

    [liuqingjie@master hadoop-0.20.2]$ bin/hadoop dfs -cat ./out/*

    cat: Source must be a file.

    110 18661629496|13107702446|987654|18661629496|13107702446|987654|

    120 1234567|2345678|1234567|2345678|

    18661629496 2897839274|2897839274|

  • 相关阅读:
    JQuery实现Ajax应用
    访问本地json文件因跨域导致的问题
    python_控制台输出带颜色的文字方法
    查询数据量大时,你会选择关联表查询还是循环中依个查询? up
    自己动手写SQL字符串分解函数Split up
    关于Access数据库执行Update语句后,不报错,但影响行数总是返回0的问题...... up
    TCP和UDP的区别
    Linxu系统下怎么安装vim编辑器
    网络编程 委托
    学习POS的数据包分析
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/7094059.html
Copyright © 2020-2023  润新知