• 赫尔德(Holder)不等式


    若 $p,q > 1$,且 $frac{1}{p} + frac{1}{q} = 1$,则对于任意的 $n$ 维向量 $a = left { x_{1},x_{2},...,x_{n} ight }$$b = left { y_{1},y_{2},...,y_{n} ight }$,有

    $$sum_{i = 1}^{n}|x_{i}|cdot |y_{i}| leq left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}}left ( sum_{i=1}^{n}|y_{i}|^{q} ight )^{frac{1}{q}}$$

    证明:

       令 $u = frac{|x_{i}|}{left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}}}$$v = frac{|y_{i}|}{left ( sum_{i=1}^{n}|y_{i}|^{q} ight )^{frac{1}{q}}}$,由杨氏不等式有

    $$uv = frac{|x_{i}|}{left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}}} cdot frac{|y_{i}|}{left ( sum_{i=1}^{n}|y_{i}|^{q} ight )^{frac{1}{q}}} leq frac{u^{p}}{p} + frac{v^{q}}{q} = frac{|x_{i}|^{p}}{psum_{i=1}^{n}|x_{i}|^{p} } + frac{|y_{i}|^{q}}{ qsum_{i=1}^{n}|y_{i}|^{q}}$$

       对于上式两边 $i$ 从 $1$ 到 $n$ 做连加得

    $$sum_{i=1}^{n}frac{|x_{i}|}{left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}}} cdot frac{|y_{i}|}{left ( sum_{i=1}^{n}|y_{i}|^{q} ight )^{frac{1}{q}}} leq sum_{i=1}^{n}frac{|x_{i}|^{p}}{psum_{i=1}^{n}|x_{i}|^{p} } + sum_{i=1}^{n}frac{|y_{i}|^{q}}{ qsum_{i=1}^{n}|y_{i}|^{q}} = frac{1}{p} + frac{1}{q} = 1$$

    $$ herefore sum_{i=1}^{n} uv leq 1$$

       于是有

    $$sum_{i = 1}^{n}|x_{i}|cdot |y_{i}| leq left ( sum_{i=1}^{n}|x_{i}|^{p} ight )^{frac{1}{p}}left ( sum_{i=1}^{n}|y_{i}|^{q} ight )^{frac{1}{q}}$$

    证毕

  • 相关阅读:
    PHP面向对象之原型(trait)
    PHP面向对象之命名空间
    Javascript中的Copy()函数
    六、unique_lock取代lock_guard
    五、互斥量
    四、创建和等待多个线程
    三、线程传参
    二、线程的启动与结束 join与detach
    HTTP:常见状态码
    HTTP:简述URL、URN和URI
  • 原文地址:https://www.cnblogs.com/yanghh/p/13343787.html
Copyright © 2020-2023  润新知