• 【译】10分钟学会Pandas


    十分钟学会Pandas

    这是关于Pandas的简短介绍主要面向新用户。你可以参考Cookbook了解更复杂的使用方法

    习惯上,我们这样导入:

    In [1]: import pandas as pd
    
    In [2]: import numpy as np
    
    In [3]: import matplotlib.pyplot as plt

    创建对象

    请参阅数据结构简介部分

    通过传递一个列表的值创建一个Series,让Pandas创建一个默认的整数索引:

    In [4]: s = pd.Series([1,3,5,np.nan,6,8])
    
    In [5]: s
    Out[5]: 
    0    1.0
    1    3.0
    2    5.0
    3    NaN
    4    6.0
    5    8.0
    dtype: float64

    通过传递的numpy数组创建一个DataFrame,并使用DataFrame索引和标记列:

    In [6]: dates = pd.date_range('20130101', periods=6)
    
    In [7]: dates
    Out[7]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
    
    In [9]: df
    Out[9]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988

    通过传递可转换成类似序列结构的字典序列来创建DataFrame。

    查看不同列的数据类型

    In [12]: df2.dtypes
    Out[12]: 
    A           float64
    B    datetime64[ns]
    C           float32
    D             int32
    E          category
    F            object
    dtype: object

    如果你使用的是IPython,可以使用Tab自动补全列名称(以及公共属性)。以下是将要完成的属性的一个子集:

    In [13]: df2.<TAB>
    df2.A                  df2.bool
    df2.abs                df2.boxplot
    df2.add                df2.C
    df2.add_prefix         df2.clip
    df2.add_suffix         df2.clip_lower
    df2.align              df2.clip_upper
    df2.all                df2.columns
    df2.any                df2.combine
    df2.append             df2.combine_first
    df2.apply              df2.compound
    df2.applymap           df2.consolidate
    df2.as_blocks          df2.convert_objects
    df2.asfreq             df2.copy
    df2.as_matrix          df2.corr
    df2.astype             df2.corrwith
    df2.at                 df2.count
    df2.at_time            df2.cov
    df2.axes               df2.cummax
    df2.B                  df2.cummin
    df2.between_time       df2.cumprod
    df2.bfill              df2.cumsum
    df2.blocks             df2.D

    像你见到的那样,A、B、C、D都是使用Tab自动补全的。E也是如此;为了简洁其它的属性被截断了。

    查看数据

    请参阅基础部分

    查看frame中头部和尾部的行

    In [14]: df.head()
    Out[14]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    
    In [15]: df.tail(3)
    Out[15]: 
                       A         B         C         D
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988

    显示索引、行和底层numpy数据

    In [16]: df.index
    Out[16]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [17]: df.columns
    Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')
    
    In [18]: df.values
    Out[18]: 
    array([[ 0.4691, -0.2829, -1.5091, -1.1356],
           [ 1.2121, -0.1732,  0.1192, -1.0442],
           [-0.8618, -2.1046, -0.4949,  1.0718],
           [ 0.7216, -0.7068, -1.0396,  0.2719],
           [-0.425 ,  0.567 ,  0.2762, -1.0874],
           [-0.6737,  0.1136, -1.4784,  0.525 ]])

    显示您的数据的快速统计摘要

    In [19]: df.describe()
    Out[19]: 
                  A         B         C         D
    count  6.000000  6.000000  6.000000  6.000000
    mean   0.073711 -0.431125 -0.687758 -0.233103
    std    0.843157  0.922818  0.779887  0.973118
    min   -0.861849 -2.104569 -1.509059 -1.135632
    25%   -0.611510 -0.600794 -1.368714 -1.076610
    50%    0.022070 -0.228039 -0.767252 -0.386188
    75%    0.658444  0.041933 -0.034326  0.461706

    数据转置

    In [20]: df.T
    Out[20]: 
       2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
    B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
    C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
    D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

    按轴排序

    In [21]: df.sort_index(axis=1, ascending=False)
    Out[21]: 
                       D         C         B         A
    2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
    2013-01-02 -1.044236  0.119209 -0.173215  1.212112
    2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
    2013-01-04  0.271860 -1.039575 -0.706771  0.721555
    2013-01-05 -1.087401  0.276232  0.567020 -0.424972
    2013-01-06  0.524988 -1.478427  0.113648 -0.673690

    按值排序

    In [22]: df.sort_values(by='B')
    Out[22]: 
                       A         B         C         D
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401

    选择

    请参阅索引文档 索引和选择数据多索引/高级索引

    读取

    选择一个单独的列,返回一个Series,等同于 df.A

    In [23]: df['A']
    Out[23]: 
    2013-01-01    0.469112
    2013-01-02    1.212112
    2013-01-03   -0.861849
    2013-01-04    0.721555
    2013-01-05   -0.424972
    2013-01-06   -0.673690
    Freq: D, Name: A, dtype: float64

    使用[]选择,对行进行切片。

    In [24]: df[0:3]
    Out[24]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    
    In [25]: df['20130102':'20130104']
    Out[25]: 
                       A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860

    通过标签选择

    详情参阅标签选择

    使用标签获取交叉区域

    In [26]: df.loc[dates[0]]
    Out[26]: 
    A    0.469112
    B   -0.282863
    C   -1.509059
    D   -1.135632
    Name: 2013-01-01 00:00:00, dtype: float64

    通过标签选择多轴

    In [27]: df.loc[:,['A','B']]
    Out[27]: 
                       A         B
    2013-01-01  0.469112 -0.282863
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020
    2013-01-06 -0.673690  0.113648

    显示标签切片,包含端点

    In [28]: df.loc['20130102':'20130104',['A','B']]
    Out[28]: 
                       A         B
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771

    降低返回对象维度

    In [29]: df.loc['20130102',['A','B']]
    Out[29]: 
    A    1.212112
    B   -0.173215
    Name: 2013-01-02 00:00:00, dtype: float64

    获取标量值

    In [30]: df.loc[dates[0],'A']
    Out[30]: 0.46911229990718628

    快速访问标量(同上一方法等价)

    In [31]: df.at[dates[0],'A']
    Out[31]: 0.46911229990718628

    按位置选择

    详情参阅按位置选择

    通过传递整数选择位置

    In [32]: df.iloc[3]
    Out[32]: 
    A    0.721555
    B   -0.706771
    C   -1.039575
    D    0.271860
    Name: 2013-01-04 00:00:00, dtype: float64

    通过整数切片,类似于numpy/python

    In [33]: df.iloc[3:5,0:2]
    Out[33]: 
                       A         B
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020

    通过列表指定位置,类似于numpy/python样式

    In [34]: df.iloc[[1,2,4],[0,2]]
    Out[34]: 
                       A         C
    2013-01-02  1.212112  0.119209
    2013-01-03 -0.861849 -0.494929
    2013-01-05 -0.424972  0.276232

    对行切片

    In [35]: df.iloc[1:3,:]
    Out[35]: 
                       A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

    对列切片

    In [36]: df.iloc[:,1:3]
    Out[36]: 
                       B         C
    2013-01-01 -0.282863 -1.509059
    2013-01-02 -0.173215  0.119209
    2013-01-03 -2.104569 -0.494929
    2013-01-04 -0.706771 -1.039575
    2013-01-05  0.567020  0.276232
    2013-01-06  0.113648 -1.478427

    获取指定值

    In [37]: df.iloc[1,1]
    Out[37]: -0.17321464905330858

    快速访问标量(同上一方法等价)

    In [38]: df.iat[1,1]
    Out[38]: -0.17321464905330858

    布尔索引

    使用单列值选择数据。

    In [39]: df[df.A > 0]
    Out[39]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860

    从满足布尔条件的DataFrame中选择值。

    In [40]: df[df > 0]
    Out[40]: 
                       A         B         C         D
    2013-01-01  0.469112       NaN       NaN       NaN
    2013-01-02  1.212112       NaN  0.119209       NaN
    2013-01-03       NaN       NaN       NaN  1.071804
    2013-01-04  0.721555       NaN       NaN  0.271860
    2013-01-05       NaN  0.567020  0.276232       NaN
    2013-01-06       NaN  0.113648       NaN  0.524988

    使用isin()方法进行过滤

    In [41]: df2 = df.copy()
    
    In [42]: df2['E'] = ['one', 'one','two','three','four','three']
    
    In [43]: df2
    Out[43]: 
                       A         B         C         D      E
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three
    
    In [44]: df2[df2['E'].isin(['two','four'])]
    Out[44]: 
                       A         B         C         D     E
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

    设置

    设置一个新列会自动使索引对齐数据

    In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
    
    In [46]: s1
    Out[46]: 
    2013-01-02    1
    2013-01-03    2
    2013-01-04    3
    2013-01-05    4
    2013-01-06    5
    2013-01-07    6
    Freq: D, dtype: int64
    
    In [47]: df['F'] = s1

    按标签切片

    In [48]: df.at[dates[0],'A'] = 0

    按位置设置值

    In [49]: df.iat[0,1] = 0

    通过numpy数组设置

    In [50]: df.loc[:,'D'] = np.array([5] * len(df))

    设置结果如下

    In [51]: df
    Out[51]: 
                       A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
    2013-01-05 -0.424972  0.567020  0.276232  5  4.0
    2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

    where操作赋值

    In [52]: df2 = df.copy()
    
    In [53]: df2[df2 > 0] = -df2
    
    In [54]: df2
    Out[54]: 
                       A         B         C  D    F
    2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
    2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
    2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
    2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
    2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
    2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

    缺失数据

    Pandas主要使用np.nan来表示缺失数据。默认情况下不包括在计算中。请参阅缺失数据部分

    重建索引允许修改/添加/删除指定轴的索引,并返回数据副本。

    In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
    
    In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
    
    In [57]: df1
    Out[57]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

    删除所有缺少数据的行。

    In [58]: df1.dropna(how='any')
    Out[58]: 
                       A         B         C  D    F    E
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

    填写缺失的数据行

    In [59]: df1.fillna(value=5)
    Out[59]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

    获取值为nan的布尔值

    In [60]: pd.isnull(df1)
    Out[60]: 
                    A      B      C      D      F      E
    2013-01-01  False  False  False  False   True  False
    2013-01-02  False  False  False  False  False  False
    2013-01-03  False  False  False  False  False   True
    2013-01-04  False  False  False  False  False   True

    运算

    请参阅二进制运算的基础部分

    统计

    运算一般排除丢失的数据。

    执行描述性统计

    In [61]: df.mean()
    Out[61]: 
    A   -0.004474
    B   -0.383981
    C   -0.687758
    D    5.000000
    F    3.000000
    dtype: float64

    在其他轴上执行相同的运算

    In [62]: df.mean(1)
    Out[62]: 
    2013-01-01    0.872735
    2013-01-02    1.431621
    2013-01-03    0.707731
    2013-01-04    1.395042
    2013-01-05    1.883656
    2013-01-06    1.592306
    Freq: D, dtype: float64

    运算具有不同维度和需要对齐的对象。此外,Pandas会沿着指定维度运算。

    In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
    
    In [64]: s
    Out[64]: 
    2013-01-01    NaN
    2013-01-02    NaN
    2013-01-03    1.0
    2013-01-04    3.0
    2013-01-05    5.0
    2013-01-06    NaN
    Freq: D, dtype: float64
    
    In [65]: df.sub(s, axis='index')
    Out[65]: 
                       A         B         C    D    F
    2013-01-01       NaN       NaN       NaN  NaN  NaN
    2013-01-02       NaN       NaN       NaN  NaN  NaN
    2013-01-03 -1.861849 -3.104569 -1.494929  4.0  1.0
    2013-01-04 -2.278445 -3.706771 -4.039575  2.0  0.0
    2013-01-05 -5.424972 -4.432980 -4.723768  0.0 -1.0
    2013-01-06       NaN       NaN       NaN  NaN  NaN

    应用

    将函数应用于数据

    In [66]: df.apply(np.cumsum)
    Out[66]: 
                       A         B         C   D     F
    2013-01-01  0.000000  0.000000 -1.509059   5   NaN
    2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
    2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
    2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
    2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
    2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0
    
    In [67]: df.apply(lambda x: x.max() - x.min())
    Out[67]: 
    A    2.073961
    B    2.671590
    C    1.785291
    D    0.000000
    F    4.000000
    dtype: float64

    直方图

    详情请请参阅直方图和离散化

    In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
    
    In [69]: s
    Out[69]: 
    0    4
    1    2
    2    1
    3    2
    4    6
    5    4
    6    4
    7    6
    8    4
    9    4
    dtype: int64
    
    In [70]: s.value_counts()
    Out[70]: 
    4    5
    6    2
    2    2
    1    1
    dtype: int64

    字符串方法

    Series在字符串中设置了一组字符串处理方法,可以方便地对数组中每个元素进行操作,如下面代码片段所示。请注意,字符串中的模式匹配默认使用正则表达式。(在某些情况下总是使用它们)。详情请参阅矢量字符串方法

    In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
    
    In [72]: s.str.lower()
    Out[72]: 
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object

    合并

    连接

    在连接/合并类型操作的情况下,Pandas提供了一些具有用于索引和关系代数的各种函数合并Series、DataFrame和Panel对象的方法

    请参阅合并部分

    使用concat()把Pandas对象连接:

    In [73]: df = pd.DataFrame(np.random.randn(10, 4))
    
    In [74]: df
    Out[74]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495
    
    # break it into pieces
    In [75]: pieces = [df[:3], df[3:7], df[7:]]
    
    In [76]: pd.concat(pieces)
    Out[76]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495

    连接

    SQL风格合并。请参阅数据库风格连接

    In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
    
    In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
    
    In [79]: left
    Out[79]: 
       key  lval
    0  foo     1
    1  foo     2
    
    In [80]: right
    Out[80]: 
       key  rval
    0  foo     4
    1  foo     5
    
    In [81]: pd.merge(left, right, on='key')
    Out[81]: 
       key  lval  rval
    0  foo     1     4
    1  foo     1     5
    2  foo     2     4
    3  foo     2     5

    给出另一个例子:

    In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
    
    In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
    
    In [84]: left
    Out[84]: 
       key  lval
    0  foo     1
    1  bar     2
    
    In [85]: right
    Out[85]: 
       key  rval
    0  foo     4
    1  bar     5
    
    In [86]: pd.merge(left, right, on='key')
    Out[86]: 
       key  lval  rval
    0  foo     1     4
    1  bar     2     5

    追加

    添加行到DataFrame。请参阅追加

    In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
    
    In [88]: df
    Out[88]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    
    In [89]: s = df.iloc[3]
    
    In [90]: df.append(s, ignore_index=True)
    Out[90]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    8  1.453749  1.208843 -0.080952 -0.264610

    分组

    "分组"我们指的是涉及一个或多个以下步骤的过程

    • Splitting:根据一些标准将数据分组
    • Applying:将功能独立应用于每个组
    • Combining:将结果合并成数据结构

    请参阅分组部分

    In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
       ....:                           'foo', 'bar', 'foo', 'foo'],
       ....:                    'B' : ['one', 'one', 'two', 'three',
       ....:                           'two', 'two', 'one', 'three'],
       ....:                    'C' : np.random.randn(8),
       ....:                    'D' : np.random.randn(8)})
       ....: 
    
    In [92]: df
    Out[92]: 
         A      B         C         D
    0  foo    one -1.202872 -0.055224
    1  bar    one -1.814470  2.395985
    2  foo    two  1.018601  1.552825
    3  bar  three -0.595447  0.166599
    4  foo    two  1.395433  0.047609
    5  bar    two -0.392670 -0.136473
    6  foo    one  0.007207 -0.561757
    7  foo  three  1.928123 -1.623033

    分组,然后将sum()函数应用于生成的组。

    In [93]: df.groupby('A').sum()
    Out[93]: 
                C        D
    A                     
    bar -2.802588  2.42611
    foo  3.146492 -0.63958

    按多列分组形成层次索引,然后应用该函数。

    In [94]: df.groupby(['A','B']).sum()
    Out[94]: 
                      C         D
    A   B                        
    bar one   -1.814470  2.395985
        three -0.595447  0.166599
        two   -0.392670 -0.136473
    foo one   -1.195665 -0.616981
        three  1.928123 -1.623033
        two    2.414034  1.600434

    重塑

    请参阅有关分层索引重塑部分

    In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
       ....:                      'foo', 'foo', 'qux', 'qux'],
       ....:                     ['one', 'two', 'one', 'two',
       ....:                      'one', 'two', 'one', 'two']]))
       ....: 
    
    In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
    
    In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
    
    In [98]: df2 = df[:4]
    
    In [99]: df2
    Out[99]: 
                         A         B
    first second                    
    bar   one     0.029399 -0.542108
          two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
          two     0.816482  1.100230

    stack()方法将"压缩"DataFrame列中的一个级别。

    In [100]: stacked = df2.stack()
    
    In [101]: stacked
    Out[101]: 
    first  second   
    bar    one     A    0.029399
                   B   -0.542108
           two     A    0.282696
                   B   -0.087302
    baz    one     A   -1.575170
                   B    1.771208
           two     A    0.816482
                   B    1.100230
    dtype: float64

    使用"stacked"DataFrame或Series(有一个MultilIndex作为索引)stack()的反向操作是unstack(),它默认情况下解除最后一个级别。

    In [102]: stacked.unstack()
    Out[102]: 
                         A         B
    first second                    
    bar   one     0.029399 -0.542108
          two     0.282696 -0.087302
    baz   one    -1.575170  1.771208
          two     0.816482  1.100230
    
    In [103]: stacked.unstack(1)
    Out[103]: 
    second        one       two
    first                      
    bar   A  0.029399  0.282696
          B -0.542108 -0.087302
    baz   A -1.575170  0.816482
          B  1.771208  1.100230
    
    In [104]: stacked.unstack(0)
    Out[104]: 
    first          bar       baz
    second                      
    one    A  0.029399 -1.575170
           B -0.542108  1.771208
    two    A  0.282696  0.816482
           B -0.087302  1.100230

    数据透视表

    请参阅数据透视表部分

    In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
       .....:                    'B' : ['A', 'B', 'C'] * 4,
       .....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
       .....:                    'D' : np.random.randn(12),
       .....:                    'E' : np.random.randn(12)})
       .....: 
    
    In [106]: df
    Out[106]: 
            A  B    C         D         E
    0     one  A  foo  1.418757 -0.179666
    1     one  B  foo -1.879024  1.291836
    2     two  C  foo  0.536826 -0.009614
    3   three  A  bar  1.006160  0.392149
    4     one  B  bar -0.029716  0.264599
    5     one  C  bar -1.146178 -0.057409
    6     two  A  foo  0.100900 -1.425638
    7   three  B  foo -1.035018  1.024098
    8     one  C  foo  0.314665 -0.106062
    9     one  A  bar -0.773723  1.824375
    10    two  B  bar -1.170653  0.595974
    11  three  C  bar  0.648740  1.167115

    我们可以轻松地从这些数据中快速生成数据透视表:

    In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
    Out[107]: 
    C             bar       foo
    A     B                    
    one   A -0.773723  1.418757
          B -0.029716 -1.879024
          C -1.146178  0.314665
    three A  1.006160       NaN
          B       NaN -1.035018
          C  0.648740       NaN
    two   A       NaN  0.100900
          B -1.170653       NaN
          C       NaN  0.536826

    时间序列

    Pandas具有简单、强大和高效的功能,用于在变频期间执行重采样操作。这在金融应用中非常常见,但是不限于此。请参阅时间序列部分

    In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
    
    In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
    
    In [110]: ts.resample('5Min').sum()
    Out[110]: 
    2012-01-01    25083
    Freq: 5T, dtype: int64

    时区表示

    In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
    
    In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
    
    In [113]: ts
    Out[113]: 
    2012-03-06    0.464000
    2012-03-07    0.227371
    2012-03-08   -0.496922
    2012-03-09    0.306389
    2012-03-10   -2.290613
    Freq: D, dtype: float64
    
    In [114]: ts_utc = ts.tz_localize('UTC')
    
    In [115]: ts_utc
    Out[115]: 
    2012-03-06 00:00:00+00:00    0.464000
    2012-03-07 00:00:00+00:00    0.227371
    2012-03-08 00:00:00+00:00   -0.496922
    2012-03-09 00:00:00+00:00    0.306389
    2012-03-10 00:00:00+00:00   -2.290613
    Freq: D, dtype: float64

    转换到另一时区

    In [116]: ts_utc.tz_convert('US/Eastern')
    Out[116]: 
    2012-03-05 19:00:00-05:00    0.464000
    2012-03-06 19:00:00-05:00    0.227371
    2012-03-07 19:00:00-05:00   -0.496922
    2012-03-08 19:00:00-05:00    0.306389
    2012-03-09 19:00:00-05:00   -2.290613
    Freq: D, dtype: float64

    在时间跨度之间转换

    In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
    
    In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
    
    In [119]: ts
    Out[119]: 
    2012-01-31   -1.134623
    2012-02-29   -1.561819
    2012-03-31   -0.260838
    2012-04-30    0.281957
    2012-05-31    1.523962
    Freq: M, dtype: float64
    
    In [120]: ps = ts.to_period()
    
    In [121]: ps
    Out[121]: 
    2012-01   -1.134623
    2012-02   -1.561819
    2012-03   -0.260838
    2012-04    0.281957
    2012-05    1.523962
    Freq: M, dtype: float64
    
    In [122]: ps.to_timestamp()
    Out[122]: 
    2012-01-01   -1.134623
    2012-02-01   -1.561819
    2012-03-01   -0.260838
    2012-04-01    0.281957
    2012-05-01    1.523962
    Freq: MS, dtype: float64

    在时间和时间戳之间转换,可以使用一些方便的算术函数。在下面例子中:

    In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
    
    In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
    
    In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
    
    In [126]: ts.head()
    Out[126]: 
    1990-03-01 09:00   -0.902937
    1990-06-01 09:00    0.068159
    1990-09-01 09:00   -0.057873
    1990-12-01 09:00   -0.368204
    1991-03-01 09:00   -1.144073
    Freq: H, dtype: float64

    明确的

    自0.15版本以来,Pandas可以在DataFrame中包含分类数据。有关完整文档,请参阅分类介绍API文档

    In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

    将原始数据转换为分类数据。

    In [128]: df["grade"] = df["raw_grade"].astype("category")
    
    In [129]: df["grade"]
    Out[129]: 
    0    a
    1    b
    2    b
    3    a
    4    a
    5    e
    Name: grade, dtype: category
    Categories (3, object): [a, b, e]

    将类别重命名为更有意义的名称

    In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

    重新排列类别并同时添加丢失的类别(Series.cat下的方法返回一个默认的新Series)。

    In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
    
    In [132]: df["grade"]
    Out[132]: 
    0    very good
    1         good
    2         good
    3    very good
    4    very good
    5     very bad
    Name: grade, dtype: category
    Categories (5, object): [very bad, bad, medium, good, very good]

    排序是按类别中的顺序排序的,而不是词法顺序。

    In [133]: df.sort_values(by="grade")
    Out[133]: 
       id raw_grade      grade
    5   6         e   very bad
    1   2         b       good
    2   3         b       good
    0   1         a  very good
    3   4         a  very good
    4   5         a  very good

    按分类列分组还显示空类别。

    In [134]: df.groupby("grade").size()
    Out[134]: 
    grade
    very bad     1
    bad          0
    medium       0
    good         2
    very good    3
    dtype: int64

    绘图

    绘图文档

    In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
    
    In [136]: ts = ts.cumsum()
    
    In [137]: ts.plot()
    Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1187d7278>

    在DataFrame中,plot()可以方便绘制带标签的所有列。

    In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
       .....:                   columns=['A', 'B', 'C', 'D'])
       .....: 
    
    In [139]: df = df.cumsum()
    
    In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
    Out[140]: <matplotlib.legend.Legend at 0x11b5dea20>

    获取数据输入/输出

    CSV

    写入一个csv文件

    In [141]: df.to_csv('foo.csv')

    从csv文件读取

    In [142]: pd.read_csv('foo.csv')
    Out[142]: 
         Unnamed: 0          A          B         C          D
    0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    5    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    6    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ..          ...        ...        ...       ...        ...
    993  2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    994  2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 5 columns]

    HDF5

    读写HDF存储

    写入HDF5存储

    In [143]: df.to_hdf('foo.h5','df')

    从HDF5存储中读取

    In [144]: pd.read_hdf('foo.h5','df')
    Out[144]: 
                        A          B         C          D
    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ...               ...        ...       ...        ...
    2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 4 columns]

    Excel

    读写Excel

    写入Excel文件

    In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

    从Excel文件读取

    In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
    Out[146]: 
                        A          B         C          D
    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    2000-01-06   0.478344   0.449933 -0.741620  -1.962409
    2000-01-07   1.235339  -0.091757 -1.543861  -1.084753
    ...               ...        ...       ...        ...
    2002-09-20 -10.628548  -9.153563 -7.883146  28.313940
    2002-09-21 -10.390377  -8.727491 -6.399645  30.914107
    2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 4 columns]

    陷阱

    如果你尝试以下操作,可以看到如下异常:

    >>> if pd.Series([False, True, False]):
        print("I was true")
    Traceback
        ...
    ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
  • 相关阅读:
    构建可视化基础——集成SVG
    构建可视化基础——使用HTML Canvas
    【目录】LeetCode Java实现
    【目录】数据结构与算法
    【目录】《剑指Offer》Java实现
    【LeetCode】102. Binary Tree Level Order Traversal
    【LeetCode】145. Binary Tree Postorder Traversal
    【LeetCode】144. Binary Tree Preorder Traversal
    【LeetCode】230. Kth Smallest Element in a BST
    【LeetCode】94. Binary Tree Inorder Traversal
  • 原文地址:https://www.cnblogs.com/yan-lei/p/7718744.html
Copyright © 2020-2023  润新知