• ubuntu 14.04 && 16.04 安装caffe+cuda8.0+pycafee总结


    从开学到现在,caffe装了有4-5次了。在这里做个总结,以防那天,自己的电脑又操作失误,又跪!

    建议,如果是自己的电脑,能用网线,可以这样搞,因为到最后关机重启后,不知道是什么原因,系统的设置中,好多软件打不开了。 建议主要看下边Ubuntu16.04的安装,我又重装的,效果很好。

    总体思路:

    1、先装ubuntu14.04。用UltralSO搞个刻录U盘就好(不知道怎么回事,电脑开不了机,尝试过16.04版本,但是感觉没有14.04好搞。。。)

    2、禁用Ubuntu自带显卡驱动

    Ubuntu的nouveau禁用方法: 
          在/etc/modprobe.d中创建文件blacklist-nouveau.conf,在文件中输入一下内容
    blacklist nouveau options nouveau modeset=0

    3、安装cuda

      说明:

      (a)可以先安装NVIDIA显卡驱动,再安装cuda,但是先装显卡驱动之后,就要注意,在安装cuda时,就不要重装cuda里带的显卡驱动了。

      (b)我的流程就是,不自己去装显卡驱动,用cuda里的。

      (c)在安装cuda时,需要关闭图形化界面

    使用alt ctrl f1-f6中的任意一个,进入黑屏命令行中,使用用户名和密码登录
    
    service lightdm stop    (使用root账户执行该命令)
    
    将下载好的进行安装,我这里用的是 cuda_8.0.61_375.26_linux.run
    所以执行
    
    sh cuda_8.0.61_375.26_linux.run
    
    然后根据提示进行安装,当遇到提示是否安装openGL时,选择no(不明所以,只是其他人这么说)
    
    重启电脑
    配置环境变量
    
          终端中输入 $ sudo gedit /etc/profile
          在打开的文件末尾,添加以下两行。
    export PATH=/usr/local/cuda-8.0/bin:$PATH 
    export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
    
    使用命令 nvidia-smi 查看当前显卡状态

    4、安装cudnn

    将cuDNN文件copy到和cuda同一目录下,然后进行解压,解压之后,执行以下命令
    
    sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
    sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
    sudo chmod a+r /usr/local/cuda/include/cudnn.h
    sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
    
    然后通过执行cuda中samples的deviceQuery来验证。

    5、安装openCV  使用github上的 OpenCV安装脚本,操作超级简单,超级好用。(不过,可能需要很长时间,我单颗 i7 跑了将近1h)

    https://github.com/jayrambhia/Install-OpenCV
    
    最后出现OpenCV-3.3.0 ready to be used类似的话,就说明安装成功了

    6、安装caffe

    安装依赖
    sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
    
    sudo apt-get install --no-install-recommends libboost-all-dev
    
    sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
    
    BLAS安装
    sudo apt-get install libatlas-base-dev
    
    安装anaconda之后pycaffe依赖好像就不用装了,我忘了,这里附上(所有python库依赖,本来是一行,这里为了排版,分成多行了)
    sudo apt-get install -y python-numpy python-scipy
       python-matplotlib python-sklearn python-skimage 
        python-h5py python-protobuf python-leveldb python-networkx 
          python-nose python-pandas python-gflags cython ipython
    
    然后从github上把caffe clone下来
    git clone https://github.com/BVLC/caffe.git
    然后复制一份Makefile.config文件,自己去修改(这里修改,可以参照网上的一些教程,按需修改,下边附上我修改的)
    cp Makefile.config.example Makefile.config
    
    然后在 caffe文件根目录下进行编译
    make all -j8  (这里的 -j8  意思是使用8核进行编译, 如果电脑是4核,用 -j4.类似,电脑有几核,最多就可以用几核编译)
    make test -j8
    make runtest -j8
    
    进行这三步应该会遇到一些问题,请自行Google
    如果出错,要重新编译,使用 
    make clean (但注意,一使用该命令,所以编译操作就要全部重做一次)
    
    需要使用python caffe接口,使用
    make pycaffe -j8
    验证 在caffe文件根目录下 cd python 切换到 ./python 目录中然后在终端下输入
    python (进入python 命令行中)
    import caffe (如果不报错,就说明没问题了)
    
    
    需要使用matlab caffe接口,使用
    make matcaffe -j8
    
    到这里所有编译全部完成。

    7、安装anaconda(推荐使用anaconda,因为这里集合了python中常用的科学工具包,不用自己之后一个一个pip install,不足之处就是,可能动态链接库会报错,不过好解决。caffe的issue中有相关回答,或者直接Google)

    推荐使用pycharm 配合使用,感觉超好。

    pycharm中import caffe/caffe2   --->    http://blog.csdn.net/u013010889/article/details/70808866

    至此,caffe 和 python环境应该就没问题了,但具体其他操作呢??

    这里推荐一个大牛的博客,自己去翻他的文章学习吧,文章的可看度还是挺高的。

    http://www.cnblogs.com/denny402/tag/caffe/

    matlab2017a安装教程

    http://blog.csdn.net/m0_37407756/article/details/73187654

    附的Makefile.config 仅供参考,不建议直接复制

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    # USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #    You should not set this flag if you will be reading LMDBs with any
    #    possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
            -gencode arch=compute_20,code=sm_21 
            -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_52,code=sm_52 
            -gencode arch=compute_60,code=sm_60 
            -gencode arch=compute_61,code=sm_61 
            -gencode arch=compute_61,code=compute_61
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    # 注意,如果用anaconda的话,下边两行都要注释掉
    # PYTHON_INCLUDE := /usr/include/python2.7 
    #        /usr/lib/python2.7/dist-packages/numpy/core/include
    
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # 这里anaconda的目录根据你安装的目录设置,如果是按默认安装的,因为默认安装目录为/root目录下,所以为  ANACONDA_HOME := $(HOME)/anaconda
    ANACONDA_HOME := /home/unicoe/anaconda2
    # 将下边的#号注释都删除掉,共3行
    PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
            $(ANACONDA_HOME)/include/python2.7 
            $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
    
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m 
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    # PYTHON_LIB := /usr/lib
    PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @

    之后的错误记录,可能还有遗漏,自行Google吧

    装完anaconda2之后,记得设置一下环境变量
    export PATH="/home/tom/anaconda2/bin:$PATH" 
    
    
    
    ./build/tools/caffe: error while loading shared libraries: libhdf5_hl.so.8: cannot open shared object file: No such file or directory
    
    在 /etc/profile 加入环境变量
    export LD_LIBRARY_PATH="/usr/local/cuda/lib64"
    export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/home/xxx/anaconda2/lib"
    
    注意,这里的  /home/xxx/anaconda2 是你装anaconda2的目录
    
    
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "caffe/__init__.py", line 1, in <module>
        from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer
      File "caffe/pycaffe.py", line 15, in <module>
        import caffe.io
      File "caffe/io.py", line 8, in <module>
        from caffe.proto import caffe_pb2
      File "caffe/proto/caffe_pb2.py", line 4, in <module>
        from google.protobuf.internal import enum_type_wrapper
    ImportError: No module named google.protobuf.internal
    
    解决方法:
    
    我是用anaconda2/bin 目录下的pip 进行  pip install protobuf 解决问题
    

      

    安装Ubuntu16.04 caffe 和 py faster rcnn是参考一下几篇博客搞定的

     用当前最新的 Ubuntu16.04.3

    Ubuntu16.04 Caffe 安装步骤记录(超详尽)    http://blog.csdn.net/yhaolpz/article/details/71375762

    我的做法:

    1、安装完Ubuntu之后,先换显卡驱动,

      (a)换显卡之前,先执行 sudo apt-get update   sudo apt-get upgrade ,将系统更新之后, 在System Settings -> Software & Updates -> Additional Drivers  中选择要换的显卡驱动(我当前的是NVIDIA-384),安装完成之后。照着上边的教程把默认显卡驱动禁用了,然后重启查看有没有问题(看能不能进入系统,能进入的话,再进行后续步骤) 

      之后我的步骤是

      (b)安装依赖包,

      (c)配置环境变量,

      (d)安装cuda(这里要注意的是,因为不用cuda带的驱动,所以安装的时候,不用关闭图形化界面),

      (e)安装cudnn也没用他的方法,我是将cudnn安装包放在了/usr/local/ 目录下,直接解压,然后用我博客上边的操作,然后用nvcc -V验证一下。

      (f)装openCV也是直接用安装脚本,直接搞定,自己做的很少。    (装完之后,重启看看)

      (g)装caffe(我装在了 /home/unicoe/ 目录下,所以要用 sudo make all -j8 && sudo make runtest -j8 )

      (h)装anaconda2(注意,在装caffe的时候,不要用anaconda2,因为会有蜜汁错误,装了caffe之后再装也是一样的)

      (i)装pycaffe(装了anaconda2之后,配置一下环境变量,就不用想博主那样装一堆Python库了)

      (j)进入 caffe/python 中 python 然后 import caffe,这里会出现一些问题,总结来说,就是缺啥装啥

      好像要装 conda install easydict   

          conda install opencv-python

    Traceback (most recent call last)

    File ImportError: /home/../anaconda2/lib/python2.7/site-packages/zmq/backend/cython/../../../../.././libstdc++.so.6: versionGLIBCXX_3.4.21' not found

    解决:

    https://github.com/BVLC/caffe/issues/4953

    https://gitter.im/BVLC/caffe/archives/2015/08/20

    cd /home/unicoe/caffe

    pip install protobuf

    sudo apt-get install python-protobuf

    conda install libgcc

    如果还有其他错误,自行Google吧

    装faster rcnn

    参照  http://blog.csdn.net/u012841667/article/details/53436615#reply 

    (a)先下载 py-faster-rcnn

      git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git

    (b) cd py-faster-rcnn/lib  然后 make

      1. cd py-faster-rcnn/lib  
      2. make 

    (c)编译/py-faster-rcnn/caffe-fast-rcnn

      改动的地方,和装caffe时一样

      (I)改Makefile.config (这个可以复制装完的caffe中的Makefile.config)

      (II)改Makefile(这个手动改,照着装caffe时的方法,不要直接复制caffe中的Makefile文件,不然会有各种问题)

    (d) make -j8 && make pycaffe

      编译的时候,就会报关于cudnn的错,上边的博客中说了,是这里的cudnn版本低,需要换成,现在caffe版本的cudnn,

    (e)参照上边的博客,cudnn依赖要改动三个地方(使用 cp命令    cp  源文件位置/源文件  目的文件位置, 具体使用,请自行查看)

      (I)将/py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/cudnn.hpp 换成最新版的caffe里的cudnn的实现,即相应的cudnn.hpp

      (II)将/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layer里的,所有以cudnn开头的文件,例如cudnn_lrn_layer.cu,cudnn_pooling_layer.cpp,cudnn_sigmoid_layer.cu。    都替换成最新版的caffe里的相应的同名文件

      (III)将./include/caffe/layers的,所有以cudnn开头的文件,例如cudnn_conv_layer.hpp,cudnn_lcn_laye.hpp    都替换成最新版的caffe里的相应的同名文件

    (f)然后就可以运行demo.py 了  

      1. cd py-faster-rcnn/tools  
      2. ./demo.py

    如果有下列错误,请参照下边博客中所说

    OSError: libcudnn.so.7.0: cannot open shared object file: No such file or directory错误

    http://blog.csdn.net/u014696921/article/details/60140264

    可供参考的blog还有  Ubuntu16.04 caffe安装记录  http://www.cnblogs.com/peiyuYang/p/7784787.html

    如有问题,请留言,或者发邮件到unicoe@163.com 中。研究生之路刚开始,希望能和大家多多交流。

  • 相关阅读:
    跨界 +赋能——互联网的下一个关键词
    Jmeter学习笔记(二十一)——Concurrency Thread Group阶梯式加压测试
    Jmeter学习笔记(二十)——后置处理器XPath Extractor使用
    Jmeter学习笔记(十九)——后置处理器之正则表达式的使用
    JMeter学习笔记(十八)——返回的响应数据出现中文乱码_解决方案
    Jmeter学习笔记(十七)——jmeter目录结构
    Jmeter学习笔记(十六)——HTTP请求之content-type
    Jmeter学习笔记(十五)——常用的4种参数化方式
    Jmeter学习笔记(十四)——逻辑控制器
    Jmeter学习笔记(十三)——xpath断言
  • 原文地址:https://www.cnblogs.com/ya-cpp/p/7674052.html
Copyright © 2020-2023  润新知