从开学到现在,caffe装了有4-5次了。在这里做个总结,以防那天,自己的电脑又操作失误,又跪!
建议,如果是自己的电脑,能用网线,可以这样搞,因为到最后关机重启后,不知道是什么原因,系统的设置中,好多软件打不开了。 建议主要看下边Ubuntu16.04的安装,我又重装的,效果很好。
总体思路:
1、先装ubuntu14.04。用UltralSO搞个刻录U盘就好(不知道怎么回事,电脑开不了机,尝试过16.04版本,但是感觉没有14.04好搞。。。)
2、禁用Ubuntu自带显卡驱动
Ubuntu的nouveau禁用方法: 在/etc/modprobe.d中创建文件blacklist-nouveau.conf,在文件中输入一下内容 blacklist nouveau options nouveau modeset=0
3、安装cuda
说明:
(a)可以先安装NVIDIA显卡驱动,再安装cuda,但是先装显卡驱动之后,就要注意,在安装cuda时,就不要重装cuda里带的显卡驱动了。
(b)我的流程就是,不自己去装显卡驱动,用cuda里的。
(c)在安装cuda时,需要关闭图形化界面
使用alt ctrl f1-f6中的任意一个,进入黑屏命令行中,使用用户名和密码登录 service lightdm stop (使用root账户执行该命令) 将下载好的进行安装,我这里用的是 cuda_8.0.61_375.26_linux.run 所以执行 sh cuda_8.0.61_375.26_linux.run 然后根据提示进行安装,当遇到提示是否安装openGL时,选择no(不明所以,只是其他人这么说) 重启电脑 配置环境变量 终端中输入 $ sudo gedit /etc/profile 在打开的文件末尾,添加以下两行。 export PATH=/usr/local/cuda-8.0/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH 使用命令 nvidia-smi 查看当前显卡状态
4、安装cudnn
将cuDNN文件copy到和cuda同一目录下,然后进行解压,解压之后,执行以下命令 sudo cp cuda/include/cudnn.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn.h sudo chmod a+r /usr/local/cuda/lib64/libcudnn* 然后通过执行cuda中samples的deviceQuery来验证。
5、安装openCV 使用github上的 OpenCV安装脚本,操作超级简单,超级好用。(不过,可能需要很长时间,我单颗 i7 跑了将近1h)
https://github.com/jayrambhia/Install-OpenCV 最后出现OpenCV-3.3.0 ready to be used类似的话,就说明安装成功了
6、安装caffe
安装依赖 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev BLAS安装 sudo apt-get install libatlas-base-dev 安装anaconda之后pycaffe依赖好像就不用装了,我忘了,这里附上(所有python库依赖,本来是一行,这里为了排版,分成多行了) sudo apt-get install -y python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags cython ipython 然后从github上把caffe clone下来 git clone https://github.com/BVLC/caffe.git 然后复制一份Makefile.config文件,自己去修改(这里修改,可以参照网上的一些教程,按需修改,下边附上我修改的) cp Makefile.config.example Makefile.config 然后在 caffe文件根目录下进行编译 make all -j8 (这里的 -j8 意思是使用8核进行编译, 如果电脑是4核,用 -j4.类似,电脑有几核,最多就可以用几核编译) make test -j8 make runtest -j8 进行这三步应该会遇到一些问题,请自行Google 如果出错,要重新编译,使用 make clean (但注意,一使用该命令,所以编译操作就要全部重做一次) 需要使用python caffe接口,使用 make pycaffe -j8 验证 在caffe文件根目录下 cd python 切换到 ./python 目录中然后在终端下输入 python (进入python 命令行中) import caffe (如果不报错,就说明没问题了) 需要使用matlab caffe接口,使用 make matcaffe -j8 到这里所有编译全部完成。
7、安装anaconda(推荐使用anaconda,因为这里集合了python中常用的科学工具包,不用自己之后一个一个pip install,不足之处就是,可能动态链接库会报错,不过好解决。caffe的issue中有相关回答,或者直接Google)
推荐使用pycharm 配合使用,感觉超好。
pycharm中import caffe/caffe2 ---> http://blog.csdn.net/u013010889/article/details/70808866
至此,caffe 和 python环境应该就没问题了,但具体其他操作呢??
这里推荐一个大牛的博客,自己去翻他的文章学习吧,文章的可看度还是挺高的。
http://www.cnblogs.com/denny402/tag/caffe/
matlab2017a安装教程
http://blog.csdn.net/m0_37407756/article/details/73187654
附的Makefile.config 仅供参考,不建议直接复制
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers # USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 -gencode arch=compute_20,code=sm_21 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. # 注意,如果用anaconda的话,下边两行都要注释掉 # PYTHON_INCLUDE := /usr/include/python2.7 # /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # 这里anaconda的目录根据你安装的目录设置,如果是按默认安装的,因为默认安装目录为/root目录下,所以为 ANACONDA_HOME := $(HOME)/anaconda ANACONDA_HOME := /home/unicoe/anaconda2 # 将下边的#号注释都删除掉,共3行 PYTHON_INCLUDE := $(ANACONDA_HOME)/include $(ANACONDA_HOME)/include/python2.7 $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. # PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
之后的错误记录,可能还有遗漏,自行Google吧
装完anaconda2之后,记得设置一下环境变量 export PATH="/home/tom/anaconda2/bin:$PATH" ./build/tools/caffe: error while loading shared libraries: libhdf5_hl.so.8: cannot open shared object file: No such file or directory 在 /etc/profile 加入环境变量 export LD_LIBRARY_PATH="/usr/local/cuda/lib64" export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/home/xxx/anaconda2/lib" 注意,这里的 /home/xxx/anaconda2 是你装anaconda2的目录 Traceback (most recent call last): File "<stdin>", line 1, in <module> File "caffe/__init__.py", line 1, in <module> from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer File "caffe/pycaffe.py", line 15, in <module> import caffe.io File "caffe/io.py", line 8, in <module> from caffe.proto import caffe_pb2 File "caffe/proto/caffe_pb2.py", line 4, in <module> from google.protobuf.internal import enum_type_wrapper ImportError: No module named google.protobuf.internal 解决方法: 我是用anaconda2/bin 目录下的pip 进行 pip install protobuf 解决问题
安装Ubuntu16.04 caffe 和 py faster rcnn是参考一下几篇博客搞定的
用当前最新的 Ubuntu16.04.3
Ubuntu16.04 Caffe 安装步骤记录(超详尽) http://blog.csdn.net/yhaolpz/article/details/71375762
我的做法:
1、安装完Ubuntu之后,先换显卡驱动,
(a)换显卡之前,先执行 sudo apt-get update sudo apt-get upgrade ,将系统更新之后, 在System Settings -> Software & Updates -> Additional Drivers 中选择要换的显卡驱动(我当前的是NVIDIA-384),安装完成之后。照着上边的教程把默认显卡驱动禁用了,然后重启查看有没有问题(看能不能进入系统,能进入的话,再进行后续步骤)
之后我的步骤是
(b)安装依赖包,
(c)配置环境变量,
(d)安装cuda(这里要注意的是,因为不用cuda带的驱动,所以安装的时候,不用关闭图形化界面),
(e)安装cudnn也没用他的方法,我是将cudnn安装包放在了/usr/local/ 目录下,直接解压,然后用我博客上边的操作,然后用nvcc -V验证一下。
(f)装openCV也是直接用安装脚本,直接搞定,自己做的很少。 (装完之后,重启看看)
(g)装caffe(我装在了 /home/unicoe/ 目录下,所以要用 sudo make all -j8 && sudo make runtest -j8 )
(h)装anaconda2(注意,在装caffe的时候,不要用anaconda2,因为会有蜜汁错误,装了caffe之后再装也是一样的)
(i)装pycaffe(装了anaconda2之后,配置一下环境变量,就不用想博主那样装一堆Python库了)
(j)进入 caffe/python 中 python 然后 import caffe,这里会出现一些问题,总结来说,就是缺啥装啥
好像要装 conda install easydict
conda install opencv-python
Traceback (most recent call last)
File ImportError: /home/../anaconda2/lib/python2.7/site-packages/zmq/backend/cython/../../../../.././libstdc++.so.6: versionGLIBCXX_3.4.21' not found
解决:
https://github.com/BVLC/caffe/issues/4953
https://gitter.im/BVLC/caffe/archives/2015/08/20
cd /home/unicoe/caffe
pip install protobuf
sudo apt-get install python-protobuf
conda install libgcc
如果还有其他错误,自行Google吧
装faster rcnn
参照 http://blog.csdn.net/u012841667/article/details/53436615#reply
(a)先下载 py-faster-rcnn
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
(b) cd py-faster-rcnn/lib 然后 make
- cd py-faster-rcnn/lib
- make
(c)编译/py-faster-rcnn/caffe-fast-rcnn
改动的地方,和装caffe时一样
(I)改Makefile.config (这个可以复制装完的caffe中的Makefile.config)
(II)改Makefile(这个手动改,照着装caffe时的方法,不要直接复制caffe中的Makefile文件,不然会有各种问题)
(d) make -j8 && make pycaffe
编译的时候,就会报关于cudnn的错,上边的博客中说了,是这里的cudnn版本低,需要换成,现在caffe版本的cudnn,
(e)参照上边的博客,cudnn依赖要改动三个地方(使用 cp命令 cp 源文件位置/源文件 目的文件位置, 具体使用,请自行查看)
(I)将/py-faster-rcnn/caffe-fast-rcnn/include/caffe/util/cudnn.hpp 换成最新版的caffe里的cudnn的实现,即相应的cudnn.hpp
(II)将/py-faster-rcnn/caffe-fast-rcnn/src/caffe/layer里的,所有以cudnn开头的文件,例如cudnn_lrn_layer.cu,cudnn_pooling_layer.cpp,cudnn_sigmoid_layer.cu。 都替换成最新版的caffe里的相应的同名文件
(III)将./include/caffe/layers的,所有以cudnn开头的文件,例如cudnn_conv_layer.hpp,cudnn_lcn_laye.hpp 都替换成最新版的caffe里的相应的同名文件
(f)然后就可以运行demo.py 了
- cd py-faster-rcnn/tools
- ./demo.py
如果有下列错误,请参照下边博客中所说
OSError: libcudnn.so.7.0: cannot open shared object file: No such file or directory错误
http://blog.csdn.net/u014696921/article/details/60140264
可供参考的blog还有 Ubuntu16.04 caffe安装记录 http://www.cnblogs.com/peiyuYang/p/7784787.html
如有问题,请留言,或者发邮件到unicoe@163.com 中。研究生之路刚开始,希望能和大家多多交流。