• P4619 [SDOI2018]旧试题


    题目

    P4619 [SDOI2018]旧试题

    Ps:山东的题目可真(du)好(liu),思维+码量的神仙题

    推式

    (sum_{i=1}^Asum_{j=1}^Bsum_{k=1}^Cd(ijk))

    (Ans=sum_{i=1}^Asum_{j=1}^Bsum_{k=1}^Cd(ijk))

    (~~~~~~~=sum_{i=1}^{A}sum_{j=1}^{B}sum_{k=1}^{C}sum_{d|i}sum_{t|j}sum_{p|k}epsilon((d,t))epsilon((t,p))epsilon((d,p)))

    (~~~~~~~=sum_{i=1}^{A}sum_{d|i}sum_{j=1}^{B}sum_{t|j}sum_{k=1}^{C}sum_{p|k}epsilon((d,t))epsilon((t,p))epsilon((d,p)))

    (~~~~~~~=sum_{d=1}^{A}sum_{i=1}^{lfloorfrac{A}{d} floor}sum_{j=1}^{B}sum_{t|j}sum_{k=1}^{C}sum_{p|k}epsilon((d,t))epsilon((t,p))epsilon((d,p)))

    (~~~~~~~=sum_{d=1}^{A}sum_{i=1}^{lfloorfrac{A}{d} floor}sum_{t=1}^{B}sum_{j=1}^{lfloorfrac{B}{t} floor}sum_{p=1}^{C}sum_{k=1}^{lfloorfrac{C} {p} floor}epsilon((d,t))epsilon((t,p))epsilon((d,p)))

    (~~~~~~~=sum_{d=1}^{A}sum_{t=1}^{B}sum_{p=1}^{C}lfloorfrac{A}{d} floorlfloorfrac{B}{t} floorlfloorfrac{C}{p} floorepsilon((d,t))epsilon((t,p))epsilon((d,p)))

    (~~~~~~~=sum_{d=1}^{A}sum_{t=1}^{B}sum_{p=1}^{C}lfloorfrac{A}{d} floorlfloorfrac{B}{t} floorlfloorfrac{C}{p} floorsum_{u|t&u|d}mu(u)sum_{v|t&v|p}mu(v))

    (~~~~~~~~~~~~sum_{w|d&w|p}mu(w))

    (~~~~~~~=sum_{u=1}^{min(A,B)}sum_{v=1}^{min(B,C)}sum_{w=1}^{min(A,C)}mu(u)mu(v)mu(w)sum_{u|d&w|d}lfloorfrac{A}{d} floorsum_{u|t&v|t}lfloorfrac{B}{t} floor)

    (~~~~~~~~~~~~sum_{v|p&w|p}lfloorfrac{C}{p} floor)

    (~~~~~~~=sum_{u=1}^{min(A,B)}sum_{v=1}^{min(B,C)}sum_{w=1}^{min(A,C)}mu(u)mu(v)mu(w)sum_{lcm(u,w)|d}lfloorfrac{A}{d} floorsum_{lcm(u,v)|t}lfloorfrac{B}{t} floor)

    (~~~~~~~~~~~~sum_{lcm(v,w)|p}lfloorfrac{C}{p} floor)

    (~~~~~~~~~)设有函数(f(n,x)=sum_{n|d}lfloorfrac{x}{d} floor)

    (~~~~~~~=sum_{u=1}^{min(A,B)}sum_{v=1}^{min(B,C)}sum_{w=1}^{min(A,C)}mu(u)mu(v)mu(w)f(lcm(u,w),A))

    (~~~~~~~~~~~~f(lcm(u,v),B)f(lcm(v,w),C))

    剪枝
    对于((u,v,w))这个三元组,我们考虑用三元环连边的方法剪枝:

    显然:(f(lcm(u,v),x))有效的条件为 (mu(u)*mu(v)!=0)(lcm(u,v)<x)

    那我们怎么连边呢?(lcm(u,v)=ucdot v cdot gcd(u,v)),第一层枚举(lcm(u,v))是肯定的

    然后枚举(u)之后你会发现(v)不是唯一的,在范围内枚举再特判时间根本承受不住,那到底怎么做呢?

    再枚举一层(gcd(u,v)),从而得到(v)

    没错,这是一个无向图,完全没必要嘛,定义成有向的,在建图的时候就特判(u>v),强制有向

    这时候是个无序三元组,只会出现一次

    再加一个判断:大度点连向小度点,某dalao简单证明后时间复杂度(O(msqrt m))

    之前的一次特判:

    保证了三元组无重复点,则最后要把此情况补上

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<iostream>
    #include<vector>
    using namespace std;
    typedef long long LL;
    const int maxn=1e5+9;
    const int mexn=1e6+9;
    const LL p=1e9+7;
    inline int Read(){
        int x(0),f(1); char c=getchar();
        while(c<'0'||c>'9'){
            if(c=='-') f=-1; c=getchar();
        }
        while(c>='0'&&c<='9')
            x=(x<<3)+(x<<1)+c-'0',c=getchar();
        return x*f;
    }
    
    int mu[maxn],prime[maxn];
    int fj[maxn][20],tp[maxn];
    bool visit[maxn];
    inline int Gcd(int a,int b){
        int c;
        while(b){
            c=a%b,a=b,b=c;
        }
        return a;
    }
    inline void F_phi(int n){
        mu[1]=1; int tot(0);
        for(int i=2;i<=n;++i){
            if(!visit[i]){
                prime[++tot]=i,
                mu[i]=-1;
            }
            for(int j=1;j<=tot&&i*prime[j]<=n;++j){
                visit[i*prime[j]]=true;
                if(i%prime[j]==0)
                    break;
                mu[i*prime[j]]=-mu[i];
            }
        }
        for(int i=1;i<=tot;++i)
            for(int j=1;j*prime[i]<=n;++j){
            	int num(j*prime[i]);
            	fj[num][tp[num]++]=prime[i];
            }
    }
    
    struct node{
        int to,d;
    };
    vector<node> edge[maxn];
    int Up,A,B,C,cnt;
    LL ans;
    int fa[maxn],fb[maxn],fc[maxn],eu[mexn],ev[mexn],ed[mexn],du[maxn];
    inline void Solve(){
        Up=max(A,max(B,C));
        if(A>B)
            swap(A,B);
        if(A>C)
            swap(A,C);
        if(B>C)
            swap(B,C);
        for(int i=1;i<=A;++i)
            for(int j=1;j*i<=A;++j)
                (fa[i]+=A/(i*j))%=p;
        for(int i=1;i<=B;++i)
            for(int j=1;j*i<=B;++j)
                (fb[i]+=B/(i*j))%=p;
        for(int i=1;i<=C;++i)
            for(int j=1;j*i<=C;++j)
                (fc[i]+=C/(i*j))%=p;
        for(int i=1;i<=Up;++i){
            if(mu[i]==0)
                continue;
            int tmp=(1<<tp[i])-1;
            for(int j=0;j<=tmp;++j){
                int u(1);
                for(int k=0,ls=j;ls;ls>>=1,++k)
                    if(ls&1)
                        u*=fj[i][k];
                for(int k=j;;k=(k-1)&j){
                    int g(1);
                    for(int t=0,ls=k;ls;ls>>=1,++t)
                        if(ls&1)
                            g*=fj[i][t];
                    int v=(LL)g*i/u;
                    ++du[u],++du[v];
                    if(u<v){
                    	eu[++cnt]=u,ev[cnt]=v,ed[cnt]=i;
                    }
                    if(k==0)
                        break;
                }
            }
        }
        for(int i=1;i<=cnt;++i){
            if(du[eu[i]]<du[ev[i]])
                swap(eu[i],ev[i]);
            edge[eu[i]].push_back((node){ev[i],ed[i]});
        }vector<node> ::iterator it1,it2;
        int nn(0);
        for(int u=1;u<=Up;++u){
            for(it1=edge[u].begin();it1!=edge[u].end();++it1){
                for(it2=edge[it1->to].begin();it2!=edge[it1->to].end();++it2){
                	int v3=(LL)it2->to*u/Gcd(it2->to,u);
                    if(v3>Up)//限制在范围内 
                        continue;
                        ++nn;
                    int v1=it1->d;int v2=it2->d;
                    if(mu[u]*mu[it1->to]*mu[it2->to]==1){
                        (ans+=((LL)fb[v2]*fc[v3]+(LL)fb[v3]*fc[v2]) *fa[v1]+
                              ((LL)fb[v1]*fc[v3]+(LL)fb[v3]*fc[v1]) *fa[v2]+
                              ((LL)fb[v2]*fc[v1]+(LL)fb[v1]*fc[v2]) *fa[v3])%=p;
                    }else {
                        (ans-=((LL)fb[v2]*fc[v3]+(LL)fb[v3]*fc[v2]) *fa[v1]+
                              ((LL)fb[v1]*fc[v3]+(LL)fb[v3]*fc[v1]) *fa[v2]+
                              ((LL)fb[v2]*fc[v1]+(LL)fb[v1]*fc[v2]) *fa[v3])%=p;
                        ans>0?ans:ans+p;
                    }
                }
            }/*
            六种贡献,如果其中一个有序三元环在前三个sigma就不符合怎么办?
    		不符合的话在函数f中反正为0 
            */
        }
        for(int i=1;i<=cnt;i++)//一个重复点的三元环
        {
            if(mu[eu[i]]==1)//two_v
            {
                (ans+=(LL)fa[ed[i]]*fb[ed[i]]%p*fc[ev[i]]%p+
                      (LL)fa[ed[i]]*fb[ev[i]]%p*fc[ed[i]]%p+
                      (LL)fa[ev[i]]*fb[ed[i]]%p*fc[ed[i]]%p)%=p;
            }
            else{
                (ans-=(LL)fa[ed[i]]*fb[ed[i]]%p*fc[ev[i]]%p+
                      (LL)fa[ed[i]]*fb[ev[i]]%p*fc[ed[i]]%p+
                      (LL)fa[ev[i]]*fb[ed[i]]%p*fc[ed[i]]%p)%=p;
                ans=ans>0?ans:ans+p;
            } 
            if(mu[ev[i]]==1){
                (ans+=(LL)fa[ed[i]]*fb[ed[i]]%p*fc[eu[i]]%p+
                      (LL)fa[ed[i]]*fb[eu[i]]%p*fc[ed[i]]%p+
                      (LL)fa[eu[i]]*fb[ed[i]]%p*fc[ed[i]]%p)%=p;
            }
            else{
                (ans-=(LL)fa[ed[i]]*fb[ed[i]]%p*fc[eu[i]]%p+
                      (LL)fa[ed[i]]*fb[eu[i]]%p*fc[ed[i]]%p+
                      (LL)fa[eu[i]]*fb[ed[i]]%p*fc[ed[i]]%p)%=p;
                ans=ans>0?ans:ans+p;
            }
        }
        for(int i=1;i<=min(min(A,B),C);i++)//三个重复点的三元环
        {
            if(mu[i]==1)
                (ans+=(LL)fa[i]*fb[i]%p*fc[i]%p)%=p;
            else  if(mu[i]==-1){
                (ans-=(LL)fa[i]*fb[i]%p*fc[i]%p)%=p;
                ans=ans>0?ans:ans+p;
            }
        }
        printf("%lld
    ",ans);
    }
    inline void Clear(){
        for(int i=1;i<=A;i++)
            fa[i]=0;
        for(int i=1;i<=B;i++)
            fb[i]=0;
        for(int i=1;i<=C;i++)
            fc[i]=0;
        for(int i=1;i<=Up;i++){
            vector<node> emp;
            swap(emp,edge[i]);
            du[i]=0;
        }
        ans=cnt=0;
    }
    int main(){
        F_phi(100000);
        int T=Read();
        while(T--){
            A=Read(),B=Read(),C=Read();
            Solve();
            Clear();
        }
        return 0;
    }
    
  • 相关阅读:
    JS 弹窗“是否删除”
    input file 保存图片
    Form之action提交不刷新不跳转
    checkbox实现单选
    最近的项目系之2——core3.0整合Autofac
    最近的项目系列1——core整合SPA
    最近的项目之开篇
    短信验证码“最佳实践”
    Asp.net core使用MediatR进程内发布/订阅
    记一次带层级结构列表数据计算性能优化
  • 原文地址:https://www.cnblogs.com/y2823774827y/p/10232024.html
Copyright © 2020-2023  润新知