• P1829 [国家集训队]Crash的数字表格 / JZPTAB


    题目

    P1829 [国家集训队]Crash的数字表格 / JZPTAB

    这题解法较多,都有值得学习的部分

    解法一

    (Ans=sum_{i=1}^{n}sum_{j=1}^{m}frac{ij}{gcd(i,j)})

    思考把(sum_{d|n}mu(d)=[n=1])带进去

    (Ans=sum_{d=1}^{min(n,m)}sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)=d]frac{ij}{d})

    (Ans=sum_{d=1}^{min(n,m)}dsum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}[gcd(i,j)=1]ij)

    至此,我们把式变成:

    (Ans=sum_{d=1}^{min(n,m)}dsum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}sum_{x|gcd(i,j)}mu(x)ij)

    我们来枚举(x)消掉(sum_{x|gcd(i,j)})

    (Ans=sum_{d=1}^{min(n,m)}dsum_{x=1}^{min(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor)}mu(x)sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}ij[x|gcd(i,j)])

    对于判断([x|gcd(i,j)])也要消掉:

    (Ans=sum_{d=1}^{min(n,m)}dsum_{x=1}^{min(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor)}mu(x)sum_{xu=1}^{lfloorfrac{n}{d} floor}sum_{xv=1}^{lfloorfrac{m}{d} floor}x^2uv)

    最后要处理的式子:

    (Ans=sum_{d=1}^{min(n,m)}dsum_{x=1}^{min(lfloorfrac{n}{d} floor,lfloorfrac{m}{d} floor)}x^2mu(x)(sum_{u=1}^{lfloorfrac{n}{dx} floor}u)(sum_{v=1}^{lfloorfrac{m}{dx} floor}v))

    直接分块,另((sum_{u=1}^{lfloorfrac{n}{dx} floor}u)(sum_{v=1}^{lfloorfrac{m}{dx} floor}v))相同

    解法二

    (egin{aligned} Ans &= sum_{d=1}^nsum_{i=1}^{n}sum_{j=1}^{m}frac{ij}{d}[gcd(i,j)=d] \ &= sum_{d=1}^ndsum_{i=1}^{lfloor frac{n}{d} floor }sum_{j=1}^{lfloor frac{m}{d} floor }ij[gcd(i,j)==1] \ & = sum_{d=1}^ndsum_{i=1}^{lfloor frac{n}{d} floor }sum_{j=1}^{lfloor frac{m}{d} floor }ijsum_{t|gcd(i,j)}mu(t) \ & = sum_{d=1}^ndsum_{t=1}^{lfloor frac{n}{d} floor}mu(t)sum_{i=1}^{frac{n}{dt}}itsum_{j=1}^{frac{m}{dt}}jt \ & = sum_{d=1}^ndsum_{t=1}^{lfloor frac{n}{d} floor}t^2mu(t)sum_{i=1}^{frac{n}{dt}}isum_{j=1}^{frac{m}{dt}}j \ end{aligned})

    由于(sum_{i=1}^{frac{n}{dt}}isum_{j=1}^{frac{m}{dt}}j)可以分块,所以枚举(dt)

    (sum_{T=1}^n sum_{i=1}^{frac{n}{T}}isum_{j=1}^{frac{m}{T}} floor)Tsum_{t|T}tmu(t))

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    typedef long long LL;
    const LL p=20101009;
    const int maxn=1e7+10;
    inline int Read(){
    	LL x=0,f=1; char c=getchar();
    	while(c<'0'||c>'9'){
    		if(c=='-') f=-1; c=getchar();
    	}
    	while(c>='0'&&c<='9'){
    		x=(x<<3)+(x<<1)+c-'0',c=getchar();
    	}
    	return x*f;
    }
    int n,m;
    LL ans;
    int mu[maxn],prime[maxn];
    LL sum[maxn];
    bool visit[maxn];
    inline void F_phi(LL max_n){
    	mu[1]=1;
    	int tot=0;
    	for(int i=2;i<=max_n;++i){
    		if(!visit[i]){
    		    prime[++tot]=i,
    			mu[i]=-1;
    		}
    		for(int j=1;j<=tot&&i*prime[j]<=max_n;++j){
    			visit[i*prime[j]]=true;
    			if(i%prime[j]==0)
    			    break;
    			else
    			    mu[i*prime[j]]=-mu[i];
    		}
    	}
    	for(int i=1;i<=max_n;++i)
    	    sum[i]=(sum[i-1]+(LL)mu[i]*i%p*i%p)%p;
    }
    int main(){
    	scanf("%d%d",&n,&m);
    	int N=min(n,m);
    	F_phi(N);
    	for(int d=1;d<=N;++d){
    		int maxx=n/d,maxy=m/d;
    		int x=min(maxx,maxy);
    		LL num=0;
    		for(int l=1,r;l<=x;l=r+1){
    			r=min(maxx/(maxx/l),maxy/(maxy/l));
    			num=(num+
    			((sum[r]-sum[l-1]+p)%p)*
    			((((1ll+maxx/l)%p)*1ll*(maxx/l)/2%p)%p)%p*
    			((((1ll+maxy/l)%p)*1ll*(maxy/l)/2%p)%p)%p)%p;
    		}
    		ans=(ans+(num*1ll*d)%p)%p;
    	}
    	printf("%lld",ans);
    	return 0;
    }/*
    1000000 1000000
    9002207
    */
    
  • 相关阅读:
    轻松实现WCF服务的构造函数依赖注入
    终于找到在Visual Studio 2010中进行“项目重命名”的有效工具
    让Entity Framework不再私闯sys.databases
    AutoMapper使用笔记
    遭遇IE8下的JavaScript兼容问题
    WCF异步调用中客户端关闭带来的性能问题
    Chrome “False Start” 引起的 Error 7 (net::ERR_TIMED_OUT): The operation timed out
    实战ASP.NET访问共享文件夹(含详细操作步骤)
    Entity Framework 理清关系 基于外键关联的单向一对一关系
    在Firefox中通过JavaScript复制到剪贴板(Copy to Clipboard)
  • 原文地址:https://www.cnblogs.com/y2823774827y/p/10223338.html
Copyright © 2020-2023  润新知