• FEM物理引擎解析


    FEM 把物体分为多个基本图元,如四面体。
    我们可以用四面体的顶点集合来表示这个物体。


    1. FEM物理引擎工作流

    Loop:
    通过受力更新顶点速度
    碰撞检测<先导顶点位置更新>
    顶点位置更新
    

    2. 顶点位置更新

    为了达到更好的效果使用后向欧拉法,
    x表示位置,t表示时间,可以导出两个公式:

    下时刻位置=这时刻位置+这时刻到下时刻的速度*时间差;
    这时刻到下时刻的速度=这时刻速度+物体下时刻位置对应受力/质量*时间差
    (比较准确的速度表示方法是向后差分)
    

    对应数学表达

    [x_{t+1} = x_t + v_{t+1}Delta t \ v_{t+1} = v_t + frac{f(x_{t+1})}{M}Delta t ]

    消去x_{t+1}

    [v_{t+1} = v_t + frac{f(x_t + v_{t+1}Delta t)}{M}Delta t ]

    我们在x_t点泰勒展开一阶来近似

    [v_{t+1} = v_t + (f(x_t) + frac{partial f}{partial x}(x_t) + v_{t+1}Delta t) frac{Delta t}M ]

    化简得

    [(1 - frac{frac{partial f}{partial x}(x_t) Delta t^2}M)v_{t+1} = v_t + frac{f(x_t)}MDelta t ]

    这里只要求一个自变量v_{t+1},使用迭代法求解


    3. 处理物体图元间的内力

    一个四面体有四个顶点,可以看做一个 4 * 3 的矩阵 X
    现在我们可以通过一个 3 * 3 的变形矩阵 R 以及平移向量 b 映射,得到变形后的四面体

    [X_{old} R + b = X_{new} ]

    变形的内力指向形变减少的方向,可以通过偏导计算变形位移,并用胡克定律计算
    但是这里并不直接计算内力,而是用一个势能场来计算势能 E,以更好地泛化问题。

    [E = psi(frac{partial X_{new}}{partial X_{old}}) = psi(GR^T) ]

    上面的 G 表示一个形状与 X 一样的全为 1 的矩阵
    这里可以获得整个物体的内力势能,即所有四面体的势能之和:

    [U = sum_i E_i ]

    由于内力会作用在整个物体势能减小的方向,
    因此,物体全局势能 U 对每一个顶点的负梯度就等效于该点的受力

    [f_i = - frac{partial U}{partial x_i} ]

    有限元模型就是在探讨如何选择势能场的问题,常用的比如:

    • 超弹性材料 Neo-Hookean 应用于橡胶、生物组织:

    [F = GR^T \ J = frac{V_{new}}{V_{old}} = |R| \ psi(F) = frac{mu}{2}sum_i[(F^TF)_{ii}-1] - mu log(J) + frac{lambda}2 log^2(J) ]

    • 小形变 Corotated 应用于金属、类刚体等:

    [psi(F) = mu sum_i[(sigma_i-1)^2] + frac{lambda}2(J-1)^2 ]

    这里需要一个自动微分求解库来完成操作,可以使用Torch,
    加法后面惩罚图元体积的变化,以接近现实情况
    再根据重力、接触力等即可模拟物体运动

  • 相关阅读:
    Moq4在.NET3.5和.NET4版本之间的差异
    TDD中的迭代
    洛谷 3413 萌数
    割点(tarjan)
    hdu-4507 吉哥系列故事——恨7不成妻
    hdu-3709 Balanced Number
    poj-3252 Round Numbers
    hdu 1007 Quoit Design 分治求最近点对
    LA 3905 Meteor 扫描线
    uva 11464
  • 原文地址:https://www.cnblogs.com/xytpai/p/15115770.html
Copyright © 2020-2023  润新知