• tensorboard windows 问题解决


     1 import tensorflow as tf
     2 import numpy as np
     3 import matplotlib.pyplot as plt
     4 def add_layer(inputs,in_size,out_size,activation_function=None):
     5     with tf.name_scope('layer'):
     6         with tf.name_scope('weights'):
     7             Weights = tf.Variable(tf.random_normal([in_size,out_size]))
     8         with tf.name_scope('biases'):
     9             biases = tf.Variable(tf.zeros([1,out_size])+0.1)
    10         with tf.name_scope('Wx_plus_b'):
    11             Wx_plus_b = tf.matmul(inputs,Weights)+biases
    12         if activation_function is None:
    13             outputs = Wx_plus_b
    14         else:
    15             outputs=activation_function(Wx_plus_b)
    16         return outputs
    17 
    18 x_data=np.linspace(-1,1,300)[:,np.newaxis]
    19 noise = np.random.normal(0,0.05,x_data.shape)
    20 y_data=np.square(x_data)-0.5+noise
    21 
    22 
    23 with tf.name_scope('input'):
    24     xs=tf.placeholder(tf.float32,[None,1],name='x_input')#1表示输入是1
    25     ys=tf.placeholder(tf.float32,[None,1],name='y_input')
    26 
    27 l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
    28 prediction=add_layer(l1,10,1,activation_function=None)
    29 with tf.name_scope('loss'):
    30     loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
    31 with tf.name_scope('train'):
    32     train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    33 
    34 
    35 init=tf.initialize_all_variables()
    36 sess=tf.Session()
    37 writer = tf.summary.FileWriter('logs/', sess.graph)####最重要####
    38 sess.run(init)
    39 
    40 fig=plt.figure()
    41 ax=fig.add_subplot(1,1,1)
    42 ax.scatter(x_data,y_data)
    43 plt.ion()#连续画图
    44 plt.show()
    45 
    46 for i in range(1000):
    47     sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    48     if i %50==0:
    49         # print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
    50         try:
    51             ax.lines.remove(lines[0])
    52         except Exception:
    53             pass
    54         prediction_value=sess.run(prediction,feed_dict={xs:x_data})
    55         lines = ax.plot(x_data,prediction_value,'r-',lw=5)
    56         plt.pause(0.1)

    常见问题如下:

    1. :tf.summary.FileWriter('logs/', sess.graph)  这是正确写法,不能写成writer = tf.train.SummaryWriter('logs/', sess.graph)会报错
    2. 生成logs文件后,cmd到logs文件夹下的路径  执行以下

           

      3:在chrome浏览器中输入http://localhost:6006

      4:打开tensorboard中点击GRAPHS即可得到网络可视图,如下:

                                                                                      

       

  • 相关阅读:
    CI平台
    【转】深藏不露,处世之道
    编写vscode插件
    css背景图宽度只适应,高度不变
    vue实现pc端无限加载功能
    box-shadow比较美观的阴影
    Nuxt.js项目实战
    vue图片放大镜效果
    vue分页组件
    为什么计算机中的小数位无法精确
  • 原文地址:https://www.cnblogs.com/xyd134/p/7281017.html
Copyright © 2020-2023  润新知