• Gauss-Legendre Quadrature


    • 算法特征:
      ①. 插值型数值积分; ②. 求积节点取Legendre多项式之零点; ③. $n + 1$个求积节点对应$2n + 1$的代数精度
    • 算法推导:
      积分区间$[a, b]$上带权函数的插值型数值积分公式如下:
      egin{equation}
      int_a^b ho (x)f(x)mathrm{d}x approx sum_{i=0}^n A_i f(x_i)
      label{eq_1}
      end{equation}
      根据Gauss Quadrature之定义, 当存在$n+1$个求积节点时, 数值积分式$eqref{eq_1}$具有最高代数精度$2n + 1$. 由此可建立如下代数方程组(此处取权函数$ ho (x) = 1$):
      egin{equation}
      int_a^b x^k dx = sum_{i=0}^n A_i x_i^k, quad ext{where }k = 0, 1, 2, cdots, 2n + 1
      label{eq_2}
      end{equation}
      求解上述方程组, 即可获得$n+1$个求积节点$x_i$及求积系数$A_i$. 显然, 硬解此非线性方程组并不是一个好主意, 尤其是当$n$取值较大时.
      不过, 在积分区间$[-1, 1]$上, 此$n+1$个求积节点$x_i$可取$n+1$阶Legendre多项式$P_{n+1}(x)$之零点, 相应数值积分也称Gauss-Legendre Quadrature. $n$阶Legendre多项式表示如下:
      egin{equation}
      P_n(x) = frac{1}{2^n n!}frac{mathrm{d}^n}{mathrm{d}x^n}[(x^2 - 1)^n]
      label{eq_3}
      end{equation}
      根据上述形式计算并获取$n+1$个求积节点$x_i$后, 代入式$eqref{eq_2}$, 任选其中$n+1$个方程, 组成新的线性方程组, 求解此线性方程组, 即可获取$n+1$个求积系数$A_i$.
      实际使用Gauss-Legendre Quadrature时, 需将任意积分区间$[a, b]$换算至$[-1, 1]$, 即:
      egin{equation}
      int_a^b f(x) mathrm{d}x = frac{b - a}{2}int_{-1}^1 fleft (frac{b - a}{2}t + frac{a + b}{2} ight ) mathrm{d}t
      label{eq_4}
      end{equation}
      以下给出5组Legendre多项式之零点及相关求积系数:
      阶数$n$ 零点$x_i$ 求积系数$A_i$
      1  $0$ $2$
      2 $pm sqrt{1 / 3}$ $1$
      3 $pm sqrt{3 / 5}$
      $0$
      $5 / 9$
      $8 / 9$
      6 $pm 0.238619186081526$
      $pm 0.661209386472165$
      $pm 0.932469514199394$
      $0.467913934574257$
      $0.360761573028128$
      $0.171324492415988$
      10 $pm 0.973906528517240$
      $pm 0.433395394129334$
      $pm 0.865063366688893$
      $pm 0.148874338981367$
      $pm 0.679409568299053$
      $0.066671344307672$
      $0.269266719309847$
      $0.149451349151147$
      $0.295524224714896$
      $0.219086362515885$
    • 代码实现:
      Part Ⅰ:
      现以如下定积分为例进行算法实施:
      egin{equation*}
      int_{0}^1 x^2mathrm{e}^x mathrm{d}x = int_{-1}^1frac{1}{8}(t + 1)^2mathrm{e}^{(t + 1) / 2}mathrm{d}t = mathrm{e} - 2
      end{equation*}
      Part Ⅱ:
      Gauss-Legendre Quadrature实现如下:
       1 # Gauss-Legendre Quadrature之实现
       2 
       3 import numpy
       4 
       5 
       6 def getGaussParams(num=6):
       7     if num == 1:
       8         X = numpy.array([0])
       9         A = numpy.array([2])
      10     elif num == 2:
      11         X = numpy.array([numpy.math.sqrt(1/3), -numpy.math.sqrt(1/3)])
      12         A = numpy.array([1, 1])
      13     elif num == 3:
      14         X = numpy.array([numpy.math.sqrt(3/5), -numpy.math.sqrt(3/5), 0])
      15         A = numpy.array([5/9, 5/9, 8/9])
      16     elif num == 6:
      17         X = numpy.array([0.238619186081526, -0.238619186081526, 0.661209386472165, -0.661209386472165, 0.932469514199394, -0.932469514199394])
      18         A = numpy.array([0.467913934574257, 0.467913934574257, 0.360761573028128, 0.360761573028128, 0.171324492415988, 0.171324492415988])
      19     elif num == 10:
      20         X = numpy.array([0.973906528517240, -0.973906528517240, 0.433395394129334, -0.433395394129334, 0.865063366688893, -0.865063366688893, 
      21             0.148874338981367, -0.148874338981367, 0.679409568299053, -0.679409568299053])
      22         A = numpy.array([0.066671344307672, 0.066671344307672, 0.269266719309847, 0.269266719309847, 0.149451349151147, 0.149451349151147, 
      23             0.295524224714896, 0.295524224714896, 0.219086362515885, 0.219086362515885])
      24     else:
      25         raise Exception(">>> Unsupported num = {} <<<".format(num))
      26     return X, A
      27     
      28 
      29 def getGaussQuadrature(func, a, b, X, A):
      30     '''
      31     func: 原始被积函数
      32     a: 积分区间下边界
      33     b: 积分区间上边界
      34     X: 求积节点数组
      35     A: 求积系数数组
      36     '''
      37     term1 = (b - a) / 2
      38     term2 = (a + b) / 2
      39     term3 = func(term1 * X + term2)
      40     term4 = numpy.sum(A * term3)
      41     val = term1 * term4
      42     return val
      43 
      44 
      45 def testFunc(x):
      46     val = x ** 2 * numpy.exp(x)
      47     return val    
      48     
      49     
      50     
      51 if __name__ == "__main__":
      52     X, A = getGaussParams(10)
      53     a, b = 0, 1
      54     numerSol = getGaussQuadrature(testFunc, 0, 1, X, A)
      55     exactSol = numpy.e - 2
      56     relatErr = (exactSol - numerSol) / exactSol
      57     print("numerical: {}; exact: {}; relative error: {}".format(numerSol, exactSol, relatErr))
      View Code
    • 结果展示:
      阶数$n$ numerical integral exact integral relative error
      1 $0.412180317675032$ $0.718281828459045$ $0.4261579489497921$
      2 $0.711941774242270$ $0.718281828459045$ $0.008826694433265773$
      3 $0.718251779040964$ $0.718281828459045$ $4.1835136140953615e-05$
      6 $0.718281828489842$ $0.718281828459045$ $-4.2875662903868903e-11$
      10 $0.718281828458231$ $0.718281828459045$ $1.1338997850082094e-12$
      可以看到, 随着Legendre多项式阶数$n$的提升, 即增加插值节点数, Gauss-Legendre Quadrature之相对误差逐渐缩小, 并最终获得较好的数值积分效果.
    • 使用建议:
      ①. 被积函数在求积节点上的函数值是可得的.
    • 参考文档:
      吕书龙, 刘文丽, 梁飞豹. Legendre多项式零点的一种求解方法及应用. 福州大学学报(自然科学版), 2011, 39(3): 334-338.
  • 相关阅读:
    1410. Crack
    1900. Brainwashing Device
    elasticsearch 数据查查询、分词查询
    elasticsearch 数据认识 与 数据表文档 的增删改
    认识 elasticsearch ,以及 检索库 的增删改查操作
    Elasticsearch集成Ikanalyzer分词器
    node.js 安装并升级
    linux 安装 elasticsearch-head
    linux 安装kibana
    linux安装Elasticsearch详细步骤
  • 原文地址:https://www.cnblogs.com/xxhbdk/p/14203877.html
Copyright © 2020-2023  润新知