声明:
本文转载自 《 U-BOOT移植过程详解: SPL》
SPL
SPL是uboot第一阶段执行的代码. 主要负责搬移uboot第二阶段的代码到内存中运行. SPL是由固化在芯片内部的ROM引导的. 我们知道很多芯片厂商固化的ROM支持从nandflash, SDCARD等外部介质启动. 所谓启动, 就是从这些外部介质中搬移一段固定大小(4K/8K/16K等)的代码到内部RAM中运行. 这里搬移的就是SPL. 在最新版本的uboot中, 可以看到SPL也支持nandflash, SDCARD等多种启动方式. 当SPL本身被搬移到内部RAM中运行时, 它会从nandflash, SDCARD等外部介质中搬移uboot第二阶段的代码到外部内存中.
SPL的文件组成
当我们在uboot下执行make命令的时候, 它最核心的功能是执行Makefile中的all目标编译出相应的文件. 我们来看看这个all目标
all: $(ALL-y) $(SUBDIR_EXAMPLES)
all: $(ALL-y) $(SUBDIR_EXAMPLES)
all依赖于
# Always append ALL so that arch config.mk's can add custom ones
ALL-y += $(obj)u-boot.srec $(obj)u-boot.bin $(obj)System.map
ALL-$(CONFIG_NAND_U_BOOT) += $(obj)u-boot-nand.bin
ALL-$(CONFIG_ONENAND_U_BOOT) += $(obj)u-boot-onenand.bin
ALL-$(CONFIG_SPL) += $(obj)spl/u-boot-spl.bin
ALL-$(CONFIG_SPL_FRAMEWORK) += $(obj)u-boot.img
ALL-$(CONFIG_TPL) += $(obj)tpl/u-boot-tpl.bin
ALL-$(CONFIG_OF_SEPARATE) += $(obj)u-boot.dtb $(obj)u-boot-dtb.bin
ifneq ($(CONFIG_SPL_TARGET),)
ALL-$(CONFIG_SPL) += $(obj)$(subst ",,$(CONFIG_SPL_TARGET))
endif
# enable combined SPL/u-boot/dtb rules for tegra
ifneq ($(CONFIG_TEGRA),)
ifeq ($(CONFIG_OF_SEPARATE),y)
ALL-y += $(obj)u-boot-dtb-tegra.bin
else
ALL-y += $(obj)u-boot-nodtb-tegra.bin
endif
endif
# Always append ALL so that arch config.mk's can add custom ones
ALL-y += $(obj)u-boot.srec $(obj)u-boot.bin $(obj)System.map
ALL-$(CONFIG_NAND_U_BOOT) += $(obj)u-boot-nand.bin
ALL-$(CONFIG_ONENAND_U_BOOT) += $(obj)u-boot-onenand.bin
ALL-$(CONFIG_SPL) += $(obj)spl/u-boot-spl.bin
ALL-$(CONFIG_SPL_FRAMEWORK) += $(obj)u-boot.img
ALL-$(CONFIG_TPL) += $(obj)tpl/u-boot-tpl.bin
ALL-$(CONFIG_OF_SEPARATE) += $(obj)u-boot.dtb $(obj)u-boot-dtb.bin
ifneq ($(CONFIG_SPL_TARGET),)
ALL-$(CONFIG_SPL) += $(obj)$(subst ",,$(CONFIG_SPL_TARGET))
endif
# enable combined SPL/u-boot/dtb rules for tegra
ifneq ($(CONFIG_TEGRA),)
ifeq ($(CONFIG_OF_SEPARATE),y)
ALL-y += $(obj)u-boot-dtb-tegra.bin
else
ALL-y += $(obj)u-boot-nodtb-tegra.bin
endif
endif
因为本节是讨论SPL, 所以我们只关注其中的一句ALL-
这句话表明
必须定义CONFIG_SPL才能编译出spl的bin: 一般在”include/configs/${CONFIG_NAME}.h”中定义
SPL的bin依赖于u-boot-spl.bin
接着往下看
$(obj)spl/u-boot-spl.bin: $(SUBDIR_TOOLS) depend
$(MAKE) -C spl all
CONFIG_SPL_BUILD := y
export CONFIG_SPL_BUILD
export CONFIG_SPL_BUILD: 在接下来的编译中, 这个变量为y. 从后面的分析中可以看到, uboot的stage1, stage2阶段的代码用的是同一个Start.S, 只不过在Start.S中用#ifdef CONFIG_SPL_BUILD这种条件编译来区分. 类似的还有其他一些文件.
SPL代码分析
u-boot-spl.lds: 它的位置在上文中我们分析了
根据u-boot-spl.lds中的规则, 我们知道CPUDIR/start.o被放在了最前面. 它所对应的文件就是arch/arm/cpu/armv7/start.S
start.S
下面我们看看start.S
.globl _start
_start: b reset
ldr pc, _undefined_instruction
ldr pc, _software_interrupt
ldr pc, _prefetch_abort
ldr pc, _data_abort
ldr pc, _not_used
ldr pc, _irq
ldr pc, _fiq
_start是我们在lds里面指定的ENTRY(_start)
首先会跳转到reset处
ldr pc, _xxx定义的是中断向量表
#ifdef CONFIG_SPL_BUILD
_undefined_instruction: .word _undefined_instruction
_software_interrupt: .word _software_interrupt
_prefetch_abort: .word _prefetch_abort
_data_abort: .word _data_abort
_not_used: .word _not_used
_irq: .word _irq
_fiq: .word _fiq
_pad: .word 0x12345678 /* now 16*4=64 */
#else
_undefined_instruction: .word undefined_instruction
_software_interrupt: .word software_interrupt
_prefetch_abort: .word prefetch_abort
_data_abort: .word data_abort
_not_used: .word not_used
_irq: .word irq
_fiq: .word fiq
_pad: .word 0x12345678 /* now 16*4=64 */
#endif /* CONFIG_SPL_BUILD */
当CONFIG了SPL_BUILD之后, 一旦发生异常中断, 就会进入死循环. 所以我们的SPL里面不允许出发异常中断
不过正常的uboot(即stage2阶段)还是可以处理异常中断的.
reset
/*
* the actual reset code
*/
reset:
bl save_boot_params
/*
* disable interrupts (FIQ and IRQ), also set the cpu to SVC32 mode,
* except if in HYP mode already
*/
mrs r0, cpsr
and r1, r0, #0x1f @ mask mode bits
teq r1, #0x1a @ test for HYP mode
bicne r0, r0, #0x1f @ clear all mode bits
orrne r0, r0, #0x13 @ set SVC mode
orr r0, r0, #0xc0 @ disable FIQ and IRQ
msr cpsr,r0
/* ........ */
/* the mask ROM code should have PLL and others stable */
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
bl cpu_init_cp15
bl cpu_init_crit
#endif
bl _main
当初次上电或者复位时, Uboot最新运行的就是这里的代码
bl save_boot_params: 如果没有重新定义save_boot_params,则使用
/*************************************************************************
*
* cpu_init_cp15
*
* Setup CP15 registers (cache, MMU, TLBs). The I-cache is turned on unless
* CONFIG_SYS_ICACHE_OFF is defined.
*
*************************************************************************/
ENTRY(cpu_init_cp15)
/*
* Invalidate L1 I/D
*/
mov r0, #0 @ set up for MCR
mcr p15, 0, r0, c8, c7, 0 @ invalidate TLBs
mcr p15, 0, r0, c7, c5, 0 @ invalidate icache
mcr p15, 0, r0, c7, c5, 6 @ invalidate BP array
mcr p15, 0, r0, c7, c10, 4 @ DSB
mcr p15, 0, r0, c7, c5, 4 @ ISB
/*
* disable MMU stuff and caches
*/
mrc p15, 0, r0, c1, c0, 0
bic r0, r0, #0x00002000 @ clear bits 13 (--V-)
bic r0, r0, #0x00000007 @ clear bits 2:0 (-CAM)
orr r0, r0, #0x00000002 @ set bit 1 (--A-) Align
orr r0, r0, #0x00000800 @ set bit 11 (Z---) BTB
#ifdef CONFIG_SYS_ICACHE_OFF
bic r0, r0, #0x00001000 @ clear bit 12 (I) I-cache
#else
orr r0, r0, #0x00001000 @ set bit 12 (I) I-cache
#endif
mcr p15, 0, r0, c1, c0, 0
#ifdef CONFIG_ARM_ERRATA_716044
mrc p15, 0, r0, c1, c0, 0 @ read system control register
orr r0, r0, #1 << 11 @ set bit #11
mcr p15, 0, r0, c1, c0, 0 @ write system control register
#endif
#ifdef CONFIG_ARM_ERRATA_742230
mrc p15, 0, r0, c15, c0, 1 @ read diagnostic register
orr r0, r0, #1 << 4 @ set bit #4
mcr p15, 0, r0, c15, c0, 1 @ write diagnostic register
#endif
#ifdef CONFIG_ARM_ERRATA_743622
mrc p15, 0, r0, c15, c0, 1 @ read diagnostic register
orr r0, r0, #1 << 6 @ set bit #6
mcr p15, 0, r0, c15, c0, 1 @ write diagnostic register
#endif
#ifdef CONFIG_ARM_ERRATA_751472
mrc p15, 0, r0, c15, c0, 1 @ read diagnostic register
orr r0, r0, #1 << 11 @ set bit #11
mcr p15, 0, r0, c15, c0, 1 @ write diagnostic register
#endif
mov pc, lr @ back to my caller
ENDPROC(cpu_init_cp15)
cpu_init_crit
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
/*************************************************************************
*
* CPU_init_critical registers
*
* setup important registers
* setup memory timing
*
*************************************************************************/
ENTRY(cpu_init_crit)
/*
* Jump to board specific initialization...
* The Mask ROM will have already initialized
* basic memory. Go here to bump up clock rate and handle
* wake up conditions.
*/
b lowlevel_init @ go setup pll,mux,memory
ENDPROC(cpu_init_crit)
#endif
b lowlevel_init : 跳转到
lowlevel_init.S
lowlevel_init
#include <asm-offsets.h>
#include <config.h>
#include <linux/linkage.h>
ENTRY(lowlevel_init)
/*
* Setup a temporary stack
*/
ldr sp, =CONFIG_SYS_INIT_SP_ADDR
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
#ifdef CONFIG_SPL_BUILD
ldr r9, =gdata
#else
sub sp, #GD_SIZE
bic sp, sp, #7
mov r9, sp
#endif
/*
* Save the old lr(passed in ip) and the current lr to stack
*/
push {ip, lr}
/*
* go setup pll, mux, memory
*/
bl s_init
pop {ip, pc}
以前老版本的uboot, lowlevel_init一般都是在board/xxx下面的板级文件夹下面实现的. 现在直接放到CPUDIR下面了, 那它做了什么事情呢
对stack pointer赋值成CONFIG_SYS_INIT_SP_ADDR
确保sp是8字节对齐
将gdata的地址存入到r9寄存器中
跳转到 s_init: 这个s_init就需要芯片厂商或者我们自己在板级文件里面实现了. 它主要做的事情
setup pll, mux, memory
我个人感觉, 新版本的uboot在CPUDIR下实现了一个lowlevel_init.S文件, 主要目标是初始化sp, 这样s_init就可以用C语言实现了. 而以前的老版本里面, s_init里面要做的事情都是用汇编做的.
crt0.S
_main
ENTRY(_main)
/*
* Set up initial C runtime environment and call board_init_f(0).
*/
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
ldr sp, =(CONFIG_SPL_STACK)
#else
ldr sp, =(CONFIG_SYS_INIT_SP_ADDR)
#endif
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
sub sp, #GD_SIZE /* allocate one GD above SP */
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
mov r9, sp /* GD is above SP */
mov r0, #0
bl board_init_f
重新对SP赋值, 确认sp是8字对齐
在栈顶保留一个global_data的大小, 这个global_data是uboot里面的一个全局数据, 很多地方都会用到. 俗称 gd_t
确认更新后的sp是8字对齐
r9指向global_data, 后面别的地方想用global_data时候, 可以直接从r9里面获取地址.
r0赋值0
bl board_init_f: 跳转到board_init_f. 在编译SPL时, 分析Makefile可以看出, 该函数的实现是在
board_init_f
/*
* In the context of SPL, board_init_f must ensure that any clocks/etc for
* DDR are enabled, ensure that the stack pointer is valid, clear the BSS
* and call board_init_f. We provide this version by default but mark it
* as __weak to allow for platforms to do this in their own way if needed.
*/
void __weak board_init_f(ulong dummy)
{
/* Clear the BSS. */
memset(__bss_start, 0, __bss_end - __bss_start);
/* Set global data pointer. */
gd = &gdata;
board_init_r(NULL, 0);
}
__weak: 表明该函数可以被重新定义
对BSS段进行清零操作
gd = &gdata;
gd的定义在DECLARE_GLOBAL_DATA_PTR
board_init_r
#ifdef CONFIG_SYS_SPL_MALLOC_START
mem_malloc_init(CONFIG_SYS_SPL_MALLOC_START,
CONFIG_SYS_SPL_MALLOC_SIZE);
#endif
如果定义了:CONFIG_SYS_SPL_MALLOC_START, 则进行memory的malloc池初始化. 以后调用malloc就在这个池子里面分配内存
#ifndef CONFIG_PPC
/*
* timer_init() does not exist on PPC systems. The timer is initialized
* and enabled (decrementer) in interrupt_init() here.
*/
timer_init();
#endif
如果没有定义:CONFIG_PPC, 则进行timer的初始化.
#ifdef CONFIG_SPL_BOARD_INIT
spl_board_init();
#endif
SPL阶段, 如果还需要做什么初始化动作, 可以放在这里. 具体的实现可以在BOARDDIR下面.
boot_device = spl_boot_device();
debug("boot device - %d
", boot_device);
必须实现spl_boot_device, 返回是从哪个外部设备启动的(NAND/SDCARD/NOR…). 可以厂商或者自己在BOARDDIR下面实现
switch (boot_device) {
#ifdef CONFIG_SPL_RAM_DEVICE
case BOOT_DEVICE_RAM:
spl_ram_load_image();
break;
#endif
#ifdef CONFIG_SPL_MMC_SUPPORT
case BOOT_DEVICE_MMC1:
case BOOT_DEVICE_MMC2:
case BOOT_DEVICE_MMC2_2:
spl_mmc_load_image();
break;
#endif
#ifdef CONFIG_SPL_NAND_SUPPORT
case BOOT_DEVICE_NAND:
spl_nand_load_image();
break;
#endif
#ifdef CONFIG_SPL_ONENAND_SUPPORT
case BOOT_DEVICE_ONENAND:
spl_onenand_load_image();
break;
#endif
#ifdef CONFIG_SPL_NOR_SUPPORT
case BOOT_DEVICE_NOR:
spl_nor_load_image();
break;
#endif
#ifdef CONFIG_SPL_YMODEM_SUPPORT
case BOOT_DEVICE_UART:
spl_ymodem_load_image();
break;
#endif
#ifdef CONFIG_SPL_SPI_SUPPORT
case BOOT_DEVICE_SPI:
spl_spi_load_image();
break;
#endif
#ifdef CONFIG_SPL_ETH_SUPPORT
case BOOT_DEVICE_CPGMAC:
#ifdef CONFIG_SPL_ETH_DEVICE
spl_net_load_image(CONFIG_SPL_ETH_DEVICE);
#else
spl_net_load_image(NULL);
#endif
break;
#endif
#ifdef CONFIG_SPL_USBETH_SUPPORT
case BOOT_DEVICE_USBETH:
spl_net_load_image("usb_ether");
break;
#endif
default:
debug("SPL: Un-supported Boot Device
");
hang();
}
将image从具体的外部设备中load到ram中. 这里暂时先不分析具体的load过程.
switch (spl_image.os) {
case IH_OS_U_BOOT:
debug("Jumping to U-Boot
");
break;
#ifdef CONFIG_SPL_OS_BOOT
case IH_OS_LINUX:
debug("Jumping to Linux
");
spl_board_prepare_for_linux();
jump_to_image_linux((void *)CONFIG_SYS_SPL_ARGS_ADDR);
#endif
default:
debug("Unsupported OS image.. Jumping nevertheless..
");
}
jump_to_image_no_args(&spl_image);
判断image的类型
如果是u-boot,则直接break, 去运行u-boot
如果是Linux,则启动Linux
至此,SPL结束它的生命,控制权交于u-boot或Linux
在接下来的一篇中, 我们会分析当控制权交给u-boot之后, uboot的运行流程
总结
SPL移植注意点
s_init: C语言实现此函数, 必须的. 如果是厂商提供的, 一般在arch/arm/cpu/xxx下面. 如果厂商没有提供, 我们可以在BOARDDIR下面实现. 主要完成以下功能
设置CPU的PLL, GPIO管脚复用, memory等
spl_board_init: C语言实现, 可选的. 如果是厂商提供的, 一般在arch/arm/cpu/xxx下面. 如果厂商没有提供, 我们可以在BOARDDIR下面实现. 主要完成的功能自己决定
spl_boot_device: C语言实现, 必须的. 如果是厂商提供的, 一般在arch/arm/cpu/xxx下面. 如果厂商没有提供, 我们可以在BOARDDIR下面实现. 主要完成的功能
返回是从什么设备启动的(NAND/SDCARD/Nor …). 像Atmel, Samsung的芯片, 都是有办法做这个事情的.