• Dining poj3281


    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

    Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

    Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

    Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

    Input

    ​ Line 1: Three space-separated integers: N, F, and D
    Lines 2.. N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

    Output

    ​ Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

    Sample Input

    4 3 3
    2 2 1 2 3 1
    2 2 2 3 1 2
    2 2 1 3 1 2
    2 1 1 3 3
    

    Sample Output

    3
    

    Hint

    ​ One way to satisfy three cows is:
    Cow 1: no meal
    Cow 2: Food #2, Drink #2
    Cow 3: Food #1, Drink #1
    Cow 4: Food #3, Drink #3
    The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course

    代码

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<stack>
    #include<queue>
    #include<set>
    using namespace std;
    template<typename T>inline void read(T &x)
    {
        x=0;
        T f=1;
        char c=getchar();
        for(; c<'0'||c>'9'; c=getchar())
            if(c=='-')
                f=-1;
        for(; c>='0'&&c<='9'; c=getchar())
            x=(x<<1)+(x<<3)+(c&15);
        x*=f;
    }
    template<typename T>inline void print(T x)
    {
        if(x<0)
            putchar('-'),x*=-1;
        if(x>=10)
            print(x/10);
        putchar(x%10+'0');
    }
    int N,F,D;
    const int MN=1e3+10;
    const int inf=0x3f3f3f3f;
    bool likeF[MN][MN];
    bool likeD[MN][MN];
    bool r[MN][MN];
    int pre[MN];
    bool visit[MN];
    typedef long long ll;
    bool BFS(int s,int t)
    {
        int p;
        queue<int>q;
        memset(pre,-1,sizeof(pre));
        memset(visit,false,sizeof(visit));
        pre[s]=s;
        visit[s]=true;
        q.push(s);
        while(!q.empty())
        {
            p=q.front();
            q.pop();
            for(int i=0; i<=2*N+F+D+1; i++)
            {
                if(r[p][i]>0&&!visit[i])
                {
                    pre[i]=p;
                    visit[i]=true;
                    if(i==t)
                        return true;
                    q.push(i);
                }
            }
        }
        return false;
    }
    ll max_flow(int s,int t)
    {
        int flow=0,d,i;
        while(BFS(s,t))
        {
            d=inf;
            for(i=t; i!=s; i=pre[i])
            {
                d=d<r[pre[i]][i]?d:r[pre[i]][i];
                for(i=t; i!=s; i=pre[i])
                {
                    r[pre[i]][i]-=d;
                    r[i][pre[i]]+=d;
                }
            }
            flow+=d;
        }
        return flow;
    }
    void solve()
    {
        int s=N*2+F+D,t=s+1;
        for(int i=0; i<F; i++)
            r[s][N*2+i]=1;
        for(int i=0; i<D; i++)
            r[2*N+F+i][t]=1;
        for(int i=0; i<N; i++)
        {
            r[i][i+N]=1;
            for(int j=0; j<F; j++)
            {
                if(likeF[i][j])
                    r[2*N+j][i]=1;
            }
            for(int j=0; j<D; j++)
            {
                if(likeD[i][j])
                    r[N+i][2*N+j+F]=1;
            }
        }
        printf("%d
    ",max_flow(s,t));
    }
    int main()
    {
        read(N),read(F),read(D);
        int a,b,c;
        for(int i=0; i<N; i++)
        {
            read(a),read(b);
            while(a--)
            {
                read(c);
                likeF[i][c-1]=1;
            }
            while(b--)
            {
                read(c);
                likeD[i][c-1]=1;
            }
        }
        solve();
    }
    
    

    思路

    应该关键在建图吧。

    建好图之后求最大流。 (这里用了EK,复习一下吧)

    PS

    一定把图建准确哦。

  • 相关阅读:
    如何讓你的程序在退出的時候執行一段代碼?
    05_Python爬蟲入門遇到的坑__總結
    04_Python爬蟲入門遇到的坑__向搜索引擎提交關鍵字02
    03_Python爬蟲入門遇到的坑__向搜索引擎提交關鍵字01
    02_Python爬蟲入門遇到的坑__反爬蟲策略02
    01_Python爬蟲入門遇到的坑__反爬蟲策略01
    Python爬蟲--rrequests庫的基本使用方法
    C#筆記00--最基礎的知識
    為元組中的每一個元素命名
    Filter函數
  • 原文地址:https://www.cnblogs.com/xxffxx/p/11969943.html
Copyright © 2020-2023  润新知