• python并发获取snmp信息及性能测试


    python & snmp

    用python获取snmp信息有多个现成的库可以使用,其中比较常用的是netsnmppysnmp两个库。网上有较多的关于两个库的例子。
    本文重点在于如何并发的获取snmp的数据,即同时获取多台机器的snmp信息。

    netsnmp

    先说netsnmp。python的netsnmp,其实是来自于net-snmp包。
    python通过一个c文件调用net-snmp的接口获取数据。

    因此,在并发获取多台机器的时候,不能够使用协程获取。因为使用协程,在get数据的时候,协程会一直等待net-snmp接口返回数据,而不会像socket使用时那样在等待数据时把CPU切换给其他协程使用。从这点上来说,使用协程和串行获取没有区别。

    那么如何解决并发获取的问题呢?可以使用线程,多线程获取(当然也可以使用多进程)。多个线程同时调用net-snmp的接口获取数据,然后cpu在多个线程之间不停切换。当一个线程获取一个结果后,可以继续调用接口获取下一个snmp数据。

    这里我写了一个样例程序。首先把所有的host和oid做成任务放到队列里,然后启动多个线程,去执行获取任务。程序样例如下:

    import threading
    import time
    import netsnmp
    import Queue
    
    start_time = time.time()
    hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114",
             "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120",
             "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15",
             "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136",
             "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140",
             "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127",
             "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118",
             "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62",
             "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31",
             "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35",
             "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133",
             "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155",
             "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231",
             "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14",
             "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2",
             "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232",
             "192.24.212.231", "192.24.212.230"]
    oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1",
            ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0",
            ".1.3.6.1.4.1.2021.4.15.0"]
    myq = Queue.Queue()
    rq = Queue.Queue()
    
    #把host和oid组成任务
    for host in hosts:
        for oid in oids:
            myq.put((host,oid))
    
    def poll_one_host():
        while True:
            try:
                #死循环从队列中获取任务,直到队列任务为空
                host, oid = myq.get(block=False)
                session = netsnmp.Session(Version=2, DestHost=host, Community="cluster",Timeout=3000000,Retries=0)
                var_list = netsnmp.VarList()
                var_list.append(netsnmp.Varbind(oid))
                ret = session.get(var_list)
                rq.put((host, oid, ret, (time.time() - start_time)))
            except Queue.Empty:
                break
    
    thread_arr = []
    
    #开启多线程
    num_thread = 50
    for i in range(num_thread):
        t = threading.Thread(target=poll_one_host, kwargs={})
        t.setDaemon(True)
        t.start()
        thread_arr.append(t)
    
    #等待任务执行完毕
    for i in range(num_thread):
        thread_arr[i].join()
    
    while True:
        try:
            info = rq.get(block=False)
            print info
        except Queue.Empty:
            print time.time() - start_time
            break
    

    netsnmp除了支持get操作之外,还支持walk操作,即遍历某个oid。
    但是walk使用的时候需要谨慎,以免导致高延时等问题,具体可以参见之前的一篇snmpwalk高延时问题分析的博客。

    pysnmp

    pysnmp是用python实现的一套snmp协议的库。其自身提供了对于异步的支持。

    import time
    import Queue
    from pysnmp.hlapi.asyncore import *
    t = time.time()
    myq = Queue.Queue()
    
    #回调函数。在有数据返回时触发
    def cbFun(snmpEngine, sendRequestHandle, errorIndication, errorStatus, errorIndex, varBinds, cbCtx):
         myq.put((time.time()-t, varBinds))
    hosts = ["192.20.150.109", "192.20.150.110", "192.20.150.111", "192.20.150.112", "192.20.150.113", "192.20.150.114",
             "192.20.150.115", "192.20.150.116", "192.20.150.117", "192.20.150.118", "192.20.150.119", "192.20.150.120",
             "192.20.150.121", "192.20.80.148", "192.20.80.149", "192.20.96.59", "192.20.82.14", "192.20.82.15",
             "192.20.82.17", "192.20.82.19", "192.20.82.12", "192.20.80.139", "192.20.80.137", "192.20.80.136",
             "192.20.80.134", "192.20.80.133", "192.20.80.131", "192.20.80.130", "192.20.81.141", "192.20.81.140",
             "192.20.82.26", "192.20.82.28", "192.20.82.23", "192.20.82.21", "192.20.80.128", "192.20.80.127",
             "192.20.80.122", "192.20.81.159", "192.20.80.121", "192.20.80.124", "192.20.81.151", "192.20.80.118",
             "192.20.80.119", "192.20.80.113", "192.20.80.112", "192.20.80.116", "192.20.80.115", "192.20.78.62",
             "192.20.81.124", "192.20.81.125", "192.20.81.122", "192.20.81.121", "192.20.82.33", "192.20.82.31",
             "192.20.82.32", "192.20.82.30", "192.20.81.128", "192.20.82.39", "192.20.82.37", "192.20.82.35",
             "192.20.81.130", "192.20.80.200", "192.20.81.136", "192.20.81.137", "192.20.81.131", "192.20.81.133",
             "192.20.81.134", "192.20.82.43", "192.20.82.45", "192.20.82.41", "192.20.79.152", "192.20.79.155",
             "192.20.79.154", "192.25.76.235", "192.25.76.234", "192.25.76.233", "192.25.76.232", "192.25.76.231",
             "192.25.76.228", "192.25.20.96", "192.25.20.95", "192.25.20.94", "192.25.20.93", "192.24.163.14",
             "192.24.163.21", "192.24.163.29", "192.24.163.6", "192.18.136.22", "192.18.136.23", "192.24.193.2",
             "192.24.193.19", "192.24.193.18", "192.24.193.11", "192.20.157.132", "192.20.157.133", "192.24.212.232",
             "192.24.212.231", "192.24.212.230"]
    
    oids = [".1.3.6.1.4.1.2021.11.9.0",".1.3.6.1.4.1.2021.11.10.0",".1.3.6.1.4.1.2021.11.11.0",".1.3.6.1.4.1.2021.10.1.3.1",
            ".1.3.6.1.4.1.2021.10.1.3.2",".1.3.6.1.4.1.2021.10.1.3.3",".1.3.6.1.4.1.2021.4.6.0",".1.3.6.1.4.1.2021.4.14.0",
            ".1.3.6.1.4.1.2021.4.15.0"]
            
    snmpEngine = SnmpEngine()
    
    #添加任务
    for oid in oids:
        for h in hosts:
            getCmd(snmpEngine,
                CommunityData('cluster'),
                UdpTransportTarget((h, 161), timeout=3, retries=0,),
                ContextData(),
                ObjectType(ObjectIdentity(oid)),
                cbFun=cbFun)
    time1 = time.time() - t
    
    #执行异步获取snmp
    snmpEngine.transportDispatcher.runDispatcher()
    
    #打印结果
    while True:
        try:
            info = myq.get(block=False)
            print info
        except Queue.Empty:
            print time1
            print time.time() - t
            break
    

    pysnmp本身只支持最基础的get和getnext命令,因此如果想使用walk,需要自己进行实现。

    性能测试

    在同一个环境下,对两者进行了性能测试。两者对198个host,10个oid进行采集。

    测试组 耗时(sec)
    netsnmp(20线程) 6.252
    netsnmp(50线程) 3.269
    netsnmp(200线程) 3.265
    pysnmp 4.812

    可以看到netsnmp的采集速度跟线程数有关。当线程数增大到一定程度,采集时间不再缩短。因为开辟线程同样会消耗时间。而已有的线程已经足够处理。

    pysnmp性能较之略差一下。详细分析pysnmp在添加任务(执行getCmd时)消耗了约1.2s,之后的采集约消耗3.3秒。

    在增加了oid数,在进行实验。host仍然是198个,oid是42个。

    测试组 耗时(sec)
    netsnmp(20线程) 30.935
    netsnmp(50线程) 12.914
    netsnmp(200线程) 4.044
    pysnmp 11.043

    可以看到差距被进一步拉大。在线程足够多的情况下,netsnmp的效率要明显强于pysnmp。

    因为二者都支持可以并行采集多个host,从易用性来说,netsnmp更为简单一些,且netsnmp支持walk功能。本文更加推荐netsnmp。

    安装netsnmp需要安装net-snmp。如果centos,则使用yum会较为方便。

  • 相关阅读:
    常用等价无穷小
    高等数学: #n阶线性微分方程 #伯努利方程
    基本积分表
    复杂度计算
    多重链表
    vminsert到vmstorage链路上的配置说明
    vmstorage在全部都是旧metric情况下的写入性能测试
    【解决了一个小问题】alert manager要怎么样才能触发告警到企业微信上?
    vmstorage在新metric占整体1%情况下的写入性能测试
    vmstorage在全部都是新metric情况下的写入性能测试
  • 原文地址:https://www.cnblogs.com/xuxinkun/p/5647715.html
Copyright © 2020-2023  润新知