在 R 中估计 GARCH 参数存在的问题(续)
本文承接《在 R 中估计 GARCH 参数存在的问题》
在之前的博客《在 R 中估计 GARCH 参数存在的问题》中,Curtis Miller 讨论了 fGarch
包和 tseries
包估计 GARCH(1, 1) 模型参数的稳定性问题,结果不容乐观。本文承接之前的博客,继续讨论估计参数的稳定性,这次使用的是前文中提到,但没有详尽测试的 rugarch
包。
rugarch
包的使用
rugarch
包中负责估计 GARCH 模型参数的最主要函数是 ugarchfit
,不过在调用该函数值前要用函数 ugarchspec
创建一个特殊对象,用来固定 GARCH 模型的阶数。
srs = ...
garch_mod = ugarchspec(
variance.model = list(
garchOrder = c(1, 1)),
mean.model = list(
armaOrder = c(0, 0),
include.mean = FALSE))
g <- ugarchfit(spec = garch_mod, data = srs)
需要注意的是 g
是一个 S4 类。
简单实验
首先用 1000 个模拟样本,
library(rugarch)
library(ggplot2)
library(fGarch)
set.seed(110117)
x <- garchSim(
garchSpec(
model = list(
"alpha" = 0.2, "beta" = 0.2, "omega" = 0.2)),
n.start = 1000,
n = 1000)
plot(x)
garch_spec = ugarchspec(
variance.model = list(garchOrder = c(1, 1)),
mean.model = list(
armaOrder = c(0, 0), include.mean = FALSE))
g_all <- ugarchfit(
spec = garch_spec, data = x)
g_50p <- ugarchfit(
spec = garch_spec, data = x[1:500])
g_20p <- ugarchfit(
spec = garch_spec, data = x[1:200])
结果同样不容乐观,
coef(g_all)
# omega alpha1 beta1
# 2.473776e-04 9.738059e-05 9.989026e-01
coef(g_50p)
# omega alpha1 beta1
# 2.312677e-04 4.453120e-10 9.989998e-01
coef(g_20p)
# omega alpha1 beta1
# 0.03370291 0.09823614 0.79988068
再用 10000 个模拟样本试试,如果使用日线级别的数据的话,这相当于 40 年长度的数据量,
set.seed(110117)
x <- garchSim(
garchSpec(
model = list(
"alpha" = 0.2, "beta" = 0.2, "omega" = 0.2)),
n.start = 1000, n = 10000)
plot(x)
g_all <- ugarchfit(
spec = garch_spec, data = x)
g_50p <- ugarchfit(
spec = garch_spec, data = x[1:5000])
g_20p <- ugarchfit(
spec = garch_spec, data = x[1:2000])
coef(g_all)
# omega alpha1 beta1
# 0.1955762 0.1924522 0.1967614
coef(g_50p)
# omega alpha1 beta1
# 0.2003755 0.1919633 0.1650453
coef(g_20p)
# omega alpha1 beta1
# 1.368689e-03 6.757177e-09 9.951920e-01
看来数据量极端大的时候,估计才可能是合理的、稳定的。
rugarch 参数估计的行为
首先使用 1000 个模拟样本做连续估计,样本数从 500 升至 1000。
library(doParallel)
cl <- makeCluster(detectCores() - 1)
registerDoParallel(cl)
set.seed(110117)
x <- garchSim(
garchSpec(
model = list(alpha = 0.2, beta = 0.2, omega = 0.2)),
n.start = 1000, n = 1000)
params <- foreach(
t = 500:1000,
.combine = rbind,
.packages = c("rugarch")) %dopar%
{
getFitDataRugarch(x[1:t])
}
rownames(params) <- 500:1000
params_df <- as.data.frame(params)
params_df$t <- as.numeric(rownames(params))
ggplot(params_df) +
geom_line(
aes(x = t, y = beta1)) +
geom_hline(
yintercept = 0.2, color = "blue") +
geom_ribbon(
aes(x = t,
ymin = beta1 - 2 * beta1.se,
ymax = beta1 + 2 * beta1.se),
color = "grey", alpha = 0.5) +
ylab(expression(hat(beta))) +
scale_y_continuous(
breaks = c(0, 0.2, 0.25, 0.5, 1)) +
coord_cartesian(ylim = c(0, 1))
几乎所有关于 (eta) 的估计都非常肯定的被认为是 1!这个结果相较于 fGarch
包来说,更加糟糕。
让我们看看其他参数的行为。
library(reshape2)
library(plyr)
library(dplyr)
param_reshape <- function(p)
{
p <- as.data.frame(p)
p$t <- as.integer(rownames(p))
pnew <- melt(p, id.vars = "t", variable.name = "parameter")
pnew$parameter <- as.character(pnew$parameter)
pnew.se <- pnew[grepl("*.se", pnew$parameter), ]
pnew.se$parameter <- sub(".se", "", pnew.se$parameter)
names(pnew.se)[3] <- "se"
pnew <- pnew[!grepl("*.se", pnew$parameter), ]
return(
join(
pnew, pnew.se,
by = c("t", "parameter"),
type = "inner"))
}
ggp <- ggplot(
param_reshape(params),
aes(x = t, y = value)) +
geom_line() +
geom_ribbon(
aes(ymin = value - 2 * se,
ymax = value + 2 * se),
color = "grey",
alpha = 0.5) +
geom_hline(yintercept = 0.2, color = "blue") +
scale_y_continuous(
breaks = c(0, 0.2, 0.25, 0.5, 0.75, 1)) +
coord_cartesian(ylim = c(0, 1)) +
facet_grid(. ~ parameter)
print(ggp + ggtitle("solnp Optimization"))
这种现象不仅限于 (eta),(omega) 和 (alpha) 也表现出极端不良行为。
极端大样本
下面将样本总数扩充至 10000,连续估计的样本数从 5000 升至 10000,情况有会怎么样?
set.seed(110117)
x <- garchSim(
garchSpec(
model = list(alpha = 0.2, beta = 0.2, omega = 0.2)),
n.start = 1000, n = 10000)
params10k <- foreach(
t = seq(5000, 10000, 100),
.combine = rbind,
.packages = c("rugarch")) %dopar%
{
getFitDataRugarch(x[1:t])
}
rownames(params10k) <- seq(5000, 10000, 100)
params10k_df <- as.data.frame(params10k)
params10k_df$t <- as.numeric(rownames(params10k))
ggplot(params10k_df) +
geom_line(
aes(x = t, y = beta1)) +
geom_hline(
yintercept = 0.2, color = "blue") +
geom_ribbon(
aes(x = t,
ymin = beta1 - 2 * beta1.se,
ymax = beta1 + 2 * beta1.se),
color = "grey", alpha = 0.5) +
ylab(expression(hat(beta))) +
scale_y_continuous(
breaks = c(0, 0.2, 0.25, 0.5, 1)) +
coord_cartesian(ylim = c(0, 1))
结果堪称完美!之前的猜测是对的,样本要极端大才能保证估计的质量。
其他参数的行为。
ggp10k <- ggplot(
param_reshape(params10k),
aes(x = t, y = value)) +
geom_line() +
geom_ribbon(
aes(ymin = value - 2 * se,
ymax = value + 2 * se),
color = "grey",
alpha = 0.5) +
geom_hline(yintercept = 0.2, color = "blue") +
scale_y_continuous(
breaks = c(0, 0.2, 0.25, 0.5, 0.75, 1)) +
coord_cartesian(ylim = c(0, 1)) +
facet_grid(. ~ parameter)
print(ggp10k + ggtitle("solnp Optimization"))
相较于 (eta),(omega) 和 (alpha) 的估计值更加稳定,这一节论和之前文章中的结论大体一致,参数估计的不稳定性集中体现在 (eta) 身上。
结论
在一般大小样本量的情况下,rugarch
和 fGarch
的表现都不好,即使改变函数的最优化算法(相关代码未贴出)也于事无补。不过当样本量极端大时,rugarch
的稳定性大幅改善,这似乎印证了机器学习中的一个常见观点,即大样本 + 简单算法胜过小样本 + 复杂算法。
为了解决非大样本情况下估计的稳定性问题,有必要找到一种 bootstrap 方法,人为扩充现实问题中有限的样本量;或者借鉴机器学习的思路,对参数施加正则化约束。