• 随笔8


    作业信息

    | 作业课程 | [机器学习](https://edu.cnblogs.com/campus/ahgc/machinelearning/) |

    |----------------------- |------------------------------|

    | 作业要求 | [作业要求](https://edu.cnblogs.com/campus/ahgc/machinelearning/) |

    | 学号 | 3180701241 |

    一.实验目的

    (1)理解K-近邻算法原理,能实现算法K近邻算法;

    (2)掌握常见的距离度量方法;

    (3)掌握K近邻树实现算法;

    (4)针对特定应用场景及数据,能应用K近邻解决实际问题。

    二.实验内容

    (1)实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。

    (2)实现K近邻树算法;

    (3)针对iris数据集,应用sklearn的K近邻算法进行类别预测;

    (4)针对iris数据集,编制程序使用K近邻树进行类别预测;

    三.实验报告要求

    (1)对照实验内容,撰写实验过程、算法及测试结果;

    (2)代码规范化:命名规则、注释;

    (3)分析核心算法的复杂度;

    (4)查阅文献,讨论K近邻的优缺点; (5)举例说明K近邻的应用场景。

    四.实验代码

    1

    距离度量

    利用python代码遍历三个点中,与1点距离最近的点

    import math
    from itertools import combinations
    def L(x, y, p=2):
    # x1 = [1, 1], x2 = [5,1]
    if len(x) == len(y) and len(x) > 1:
    sum = 0
    for i in range(len(x)):
    sum += math.pow(abs(x[i] - y[i]), p)
    return math.pow(sum, 1/p)
    else:
    return 0
    x1 = [1, 1]
    x2 = [5, 1]
    x3 = [4, 4]

    结果:

    (3.0, '1-[4, 4]')
    (3.0, '1-[4, 4]')
    (3.0, '1-[4, 4]')
    (3.0, '1-[4, 4]')

    2.编写K-近邻算法

    python实现,遍历所有数据点,找出n个距离最近的点的分类情况,少数服从多数(不使用直接的python中现有的K-近邻算法包)

    # 导包
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    复制代码
    复制代码
    # data 输入数据
    iris = load_iris() # 获取python中鸢尾花Iris数据集
    df = pd.DataFrame(iris.data, columns=iris.feature_names) # 将数据集使用DataFrame建表
    df['label'] = iris.target # 将表的最后一列作为目标列
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # 定义表中每一列
    # data = np.array(df.iloc[:100, [0, 1, -1]])

    结果:

    #数据进行可视化
    #将标签为0、1的两种花,根据特征为长度和宽度打点表示
    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()

    结果:

    #取数据,并且分成训练和测试集合
    data = np.array(df.iloc[:100, [0, 1, -1]])
    #按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签
    X, y = data[:,:-1], data[:,-1]#X为sepal length,sepal width y为标签 
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    # train_test_split函数用于将矩阵随机划分为训练子集和测试子集
    复制代码
    复制代码
    # 建立一个类KNN,用于k-近邻的计算
    class KNN:
        #初始化
        def __init__(self, X_train, y_train, n_neighbors=3, p=2): # 初始化数据,neighbor表示邻近点,p为欧氏距离
            self.n = n_neighbors
            self.p = p
            self.X_train = X_train
            self.y_train = y_train
        
        def predict(self, X):
            # X为测试集
            knn_list = []
            for i in range(self.n): # 遍历邻近点
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离
                knn_list.append((dist, self.y_train[i])) # 在列表末尾添加一个元素
                
            for i in range(self.n, len(self.X_train)): # 3-20
                max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) # 找出列表中距离最大的点
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离
                if knn_list[max_index][0] > dist:   # 若当前数据的距离大于之前得出的距离,就将数值替换
                    knn_list[max_index] = (dist, self.y_train[i])
                    
            # 统计
            knn = [k[-1] for k in knn_list]
            count_pairs = Counter(knn)   # 统计标签的个数
            max_count = sorted(count_pairs, key=lambda x:x)[-1]  # 将标签升序排列
            return max_count
        
        # 计算测试算法的正确率
        def score(self, X_test, y_test):
            right_count = 0 
            n = 10
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right_count += 1
            return right_count / len(X_test)
    复制代码
    clf = KNN(X_train, y_train) # 调用KNN算法进行计算
    clf.score(X_test, y_test) # 计算正确率

    结果:Out [12]:1.0

    #预测点
    test_point = [6.0, 3.0]
    #预测结果
    print('Test Point: {}'.format(clf.predict(test_point)))

    结果:Test Point: 1.0

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    #打印预测点
    plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()

    结果:

    3.使用scikitlearn中编好的包直接调用实现K-近邻算法 

    sklearn.neighbors.KNeighborsClassifier
    n_neighbors: 临近点个数
    p: 距离度量
    algorithm: 近邻算法,可选{'auto', 'ball_tree', 'kd_tree', 'brute'}
    weights: 确定近邻的权重

    # 导包
    from sklearn.neighbors import KNeighborsClassifier
    # 调用
    clf_sk = KNeighborsClassifier()
    clf_sk.fit(X_train, y_train)

    结果:

    Out[16]:
    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
    metric_params=None, n_jobs=1, n_neighbors=5, p=2,
    weights='uniform')

    clf_sk.score(X_test, y_test) # 计算正确率
    结果:Out [17]:1.0
    4.针对iris数据集,编制程序使用K近邻树进行类别预测
    # 建造kd树
    # kd-tree 每个结点中主要包含的数据如下:
    class KdNode(object):
        def __init__(self, dom_elt, split, left, right):
            self.dom_elt = dom_elt#结点的父结点
            self.split = split#划分结点
            self.left = left#做结点
            self.right = right#右结点
    
    class KdTree(object):
        def __init__(self, data):
            k = len(data[0])#数据维度
            #print("创建结点")
            #print("开始执行创建结点函数!!!")
            def CreateNode(split, data_set):
                #print(split,data_set)
                if not data_set:#数据集为空
                    return None
                #print("进入函数!!!")
                data_set.sort(key=lambda x:x[split])#开始找切分平面的维度
                #print("data_set:",data_set)
                split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整)
                median = data_set[split_pos]
                split_next = (split+1) % k #(取余数)取得下一个节点的分离维数
                return KdNode(
                    median,
                    split,
                    CreateNode(split_next, data_set[:split_pos]),#创建左结点
                    CreateNode(split_next, data_set[split_pos+1:]))#创建右结点
            #print("结束创建结点函数!!!")
            self.root = CreateNode(0, data)#创建根结点
                
    #KDTree的前序遍历
    def preorder(root):
        print(root.dom_elt)
        if root.left:
            preorder(root.left)
        if root.right:
            preorder(root.right)
    # 遍历kd树
    #KDTree的前序遍历
    def preorder(root):
        print(root.dom_elt)
        if root.left:
            preorder(root.left)
        if root.right:
            preorder(root.right)
                   
    from math import sqrt
    from collections import namedtuple
    # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
    result = namedtuple("Result_tuple",
                        "nearest_point  nearest_dist  nodes_visited")
    
    #搜索开始
    def find_nearest(tree, point):
        k = len(point)#数据维度
        
        def travel(kd_node, target, max_dist):
            if kd_node is None:
                return result([0]*k, float("inf"), 0)#表示数据的无
            
            nodes_visited = 1
            s = kd_node.split #数据维度分隔
            pivot = kd_node.dom_elt #切分根节点
            
            if target[s] <= pivot[s]:
                nearer_node = kd_node.left #下一个左结点为树根结点
                further_node = kd_node.right #记录右节点
            else: #右面更近
                nearer_node = kd_node.right
                further_node = kd_node.left
            temp1 = travel(nearer_node, target, max_dist)
            
            nearest = temp1.nearest_point# 得到叶子结点,此时为nearest
            dist = temp1.nearest_dist #update distance
            
            nodes_visited += temp1.nodes_visited
            print("nodes_visited:", nodes_visited)
            if dist < max_dist:
                max_dist = dist
            
            temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离
            if max_dist < temp_dist:
                return result(nearest, dist, nodes_visited)
            # -------
            #计算分隔点的欧式距离
            
            temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance
            
            if temp_dist < dist:
                
                nearest = pivot #更新最近点
                dist = temp_dist #更新最近距离
                max_dist = dist #更新超球体的半径
                print("输出数据:" , nearest, dist, max_dist)
                
            # 检查另一个子结点对应的区域是否有更近的点
            temp2 = travel(further_node, target, max_dist)
    
            nodes_visited += temp2.nodes_visited
            if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
                nearest = temp2.nearest_point  # 更新最近点
                dist = temp2.nearest_dist  # 更新最近距离
    
            return result(nearest, dist, nodes_visited)
    
        return travel(tree.root, point, float("inf"))  # 从根节点开始递归
    # 遍历kd树
    #KDTree的前序遍历
    def preorder(root):
        print(root.dom_elt)
        if root.left:
            preorder(root.left)
        if root.right:
            preorder(root.right)
                   
    from math import sqrt
    from collections import namedtuple
    # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
    result = namedtuple("Result_tuple",
                        "nearest_point  nearest_dist  nodes_visited")
    
    #搜索开始
    def find_nearest(tree, point):
        k = len(point)#数据维度
        
        def travel(kd_node, target, max_dist):
            if kd_node is None:
                return result([0]*k, float("inf"), 0)#表示数据的无
            
            nodes_visited = 1
            s = kd_node.split #数据维度分隔
            pivot = kd_node.dom_elt #切分根节点
            
            if target[s] <= pivot[s]:
                nearer_node = kd_node.left #下一个左结点为树根结点
                further_node = kd_node.right #记录右节点
            else: #右面更近
                nearer_node = kd_node.right
                further_node = kd_node.left
            temp1 = travel(nearer_node, target, max_dist)
            
            nearest = temp1.nearest_point# 得到叶子结点,此时为nearest
            dist = temp1.nearest_dist #update distance
            
            nodes_visited += temp1.nodes_visited
            print("nodes_visited:", nodes_visited)
            if dist < max_dist:
                max_dist = dist
            
            temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离
            if max_dist < temp_dist:
                return result(nearest, dist, nodes_visited)
            # -------
            #计算分隔点的欧式距离
            
            temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance
            
            if temp_dist < dist:
                
                nearest = pivot #更新最近点
                dist = temp_dist #更新最近距离
                max_dist = dist #更新超球体的半径
                print("输出数据:" , nearest, dist, max_dist)
                
            # 检查另一个子结点对应的区域是否有更近的点
            temp2 = travel(further_node, target, max_dist)
    
            nodes_visited += temp2.nodes_visited
            if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
                nearest = temp2.nearest_point  # 更新最近点
                dist = temp2.nearest_dist  # 更新最近距离
    
            return result(nearest, dist, nodes_visited)
    
        return travel(tree.root, point, float("inf"))  # 从根节点开始递归
    复制代码
    # 数据测试
    data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd=KdTree(data)
    preorder(kd.root)

    结果:

     

    # 导包
    from time import clock
    from random import random
    
    # 产生一个k维随机向量,每维分量值在0~1之间
    def random_point(k): 
        return [random() for _ in range(k)]
    
    # 产生n个k维随机向量
    def random_points(k, n):
        return [random_point(k) for _ in range(n)]
    复制代码
    # 输入数据进行测试
    ret = find_nearest(kd, [3,4.5])
    print (ret)

    结果:

    Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)

    N = 400000
    t0 = clock()
    kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
    ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最*的点
    t1 = clock()
    print ("time: ",t1-t0, "s")
    print (ret2)

    结果:

    7.299844505209247 s
    Result_tuple(nearest_point=[0.10505669630674175, 0.49542598718931097, 0.803316691954
    3026], nearest_dist=0.007582362181450973, nodes_visited=53)

    实验小结

    k-近邻算法的核心思想是未标记样本的类别,由距离其最近的k个邻居投票来决定。此算法对于欠拟合的现象很难处理,没有很好的措施来解决,在建立模型的时候不能使用较为简单的模型,否则就无法很好的拟合出很好的训练样本。



  • 相关阅读:
    IOS – OpenGL ES 图像浮雕3d效果 GPUImageEmbossFilter
    IOS – OpenGL ES 图像柏林噪点/花边噪点 GPUImagePerlinNoiseFilter
    IOS – OpenGL ES 图像CGA色彩滤镜 GPUImageCGAColorspaceFilter
    IOS – OpenGL ES 图像色调分离噪点效果 GPUImagePosterizeFilter
    IOS – OpenGL ES 图像加亮边缘 GPUImage3x3ConvolutionFilter
    一篇文章搞清楚 CI, CD AND CD
    C# 按字节截断字符串
    web浏览器网页打印
    数据库字段命名与Java中变量命名区别
    NSGA2快速非支配排序实现python
  • 原文地址:https://www.cnblogs.com/xuexiaomeng/p/14786216.html
Copyright © 2020-2023  润新知