• UVALive 4639 && SPOJ SPOINTS && POJ 3805 && AOJ 1298 Separate Points 求两个凸包是否相交 难度:3


    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2640

    http://www.spoj.com/problems/SPOINTS/en/

    http://poj.org/problem?id=3805

    http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=1298

    要想有一条直线分两个凸包,两个凸包不相交,不相切是必要的

    在没有模板的情况下,我的代码,过了poj,uva,和spoj的,但是过不了aoj的,和正确代码对拍所发现的情况不太符合事实

    方法是:

    1.判断每个点是否在凸包里面或者边上

    2.判断两凸包每两条线段是否相交

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const double eps=1e-8;
    const int  maxn=205;
    int dcmp(double d){
        if(fabs(d)<eps)return 0;
        return d>0?1:-1;
    }
    struct pnt{
        double x,y;
        pnt():x(0),y(0){}
        pnt(double tx,double ty):x(tx),y(ty){}
        pnt operator -(pnt p2){
            pnt newp(x-p2.x,y-p2.y);
            return newp;
        }
        pnt operator +(pnt p2){
            pnt newp(x+p2.x,y+p2.y);
            return newp;
        }
        pnt operator *(double  d){
            pnt newp(x*d,y*d);
            return newp;
        }
        pnt operator /(double  d){
            pnt newp(x/d,y/d);
            return newp;
        }
        double dis(pnt p2){
            return sqrt((x-p2.x)*(x-p2.x)+(y-p2.y)*(y-p2.y));
        }
        bool operator ==(pnt p2){
            if(dcmp(x-p2.x)==0&&dcmp(y-p2.y)==0)return true;
            return false;
        }
    };
    double cross(pnt p1,pnt p2){
        return p1.x*p2.y-p1.y*p2.x;
    }
    bool cmpx(pnt p1,pnt p2){
        if(p1.x!=p2.x)return p1.x<p2.x;
        return p1.y<p2.y;
    }
    pnt base;
    bool cmp(pnt p1,pnt p2){
        return cross(p1-  base,p2-base)<0;
    }
    
    int isPointInConvexPolygon(pnt p1,pnt * p,int n){
        for(int i=0;i<n;i++){
            pnt A=pnt(p[(i+1)%n].x-p[i].x,p[(i+1)%n].y-p[i].y);
            pnt B=pnt(p1.x-p[i].x,p1.y-p[i].y);
            int fl=dcmp(cross(A,B));
            if(fl<0)return 0;
            if(fl==0){
                int maxx=max(p[(i+1)%n].x,p[i].x);
                int minx=min(p[(i+1)%n].x,p[i].x);
                int maxy=max(p[(i+1)%n].y,p[i].y);
                int miny=min(p[(i+1)%n].y,p[i].y);
                if(minx<=p1.x&&maxx>=p1.x&&miny<=p1.y&&maxy>=p1.y)return -1;//on the edge
                else return 0;
            }
        }
        return 1;
    }
    int graham(pnt * p,pnt * h,int n){
    
            int m=0;
            for(int i=0;i<n;i++){//计算上凸包
                    while(m>1&&cross((h[m-1]-h[m-2]),(p[i]-h[m-2]))<=0){m--;}
                    h[m++]=p[i];
            }
            int tm=m;
            for(int i=n-2;i>=0;i--){//计算下凸包
                    while(m>tm&&cross((h[m-1]-h[m-2]),(p[i]-h[m-2]))<=0){m--;}
                    h[m++]=p[i];
            }
            if(n>1)m--;
            return m;
    }
    
    bool between(pnt p1,pnt p2,pnt p){
            return (p.x<=max(p1.x,p2.x)&&p.x>=min(p1.x,p2.x))
            &&  (p.y<=max(p1.y,p2.y)&&p.y>=min(p1.y,p2.y));
    }
    bool isInsert(pnt p11,pnt p12,pnt p21,pnt p22){
            pnt v=p22-p21;
            pnt w=p12-p11;
            pnt u=p21-p11;
            if(cross(v,w)==0){
                    if(cross(v,u)!=0)return false;
                    if(between(p11,p12,p21))return true;
                    if(between(p11,p12,p22))return true;
                    return false;
            }
            double t=cross(w,u)/cross(v,w);
            double t2=cross(v,u)/cross(v,w);
            if(t2>1||t2<0)return false;
            if(t>1||t<0)return false;
            return true;
    }
    
    pnt bp[maxn],bh[maxn],wp[maxn],wh[maxn];
    int bn,wn,btop,wtop;
    
    int main(){
            while(scanf("%d%d",&bn,&wn)==2&&(bn||wn)){
                    for(int i=0;i<bn;i++){
                            scanf("%lf%lf",&bp[i].x,&bp[i].y);
                    }
                    for(int i=0;i<wn;i++){
                            scanf("%lf%lf",&wp[i].x,&wp[i].y);
                    }
                    bool fl=true;
    
                    if(bn>1){
                            sort(bp,bp+bn,cmpx);
                            base =bp[0];
                            sort(bp+1,bp+bn,cmp);
                            btop=graham(bp,bh,bn);
    
                            if(fl)for(int i=0;i<wn;i++){
                                    if(isPointInConvexPolygon(wp[i],bh,btop)){
                                            fl=false;
                                            break;
                                    }
                            }
                    }
    
                    if(wn>1){
                            sort(wp,wp+wn,cmpx);
                            base =wp[0];
                            sort(wp+1,wp+wn,cmp);
                            wtop=graham(wp,wh,wn);
    
    
                            if(fl){
                                    for(int i=0;i<bn;i++){
                                            if(isPointInConvexPolygon(bp[i],wh,wtop)){
                                                    fl=false;
                                                    break;
                                            }
                                    }
                            }
                    }
    
                    if(fl&&bn>1&&wn>1){
                            for(int i=0;i<btop;i++){
                                    for(int j=0;j<wtop;j++){
                                            if(isInsert(bh[i],bh[(i+1)%btop],wh[j],wh[(j+1)%wtop])){
                                                    fl=false;
                                                    break;
                                            }
                                    }
                            }
                    }
                    if(wn==1&&bn==1&&bp[0]==wp[0]){fl=false;}
    
    
                    if(fl)puts("YES");
                    else puts("NO");
            }
            return 0;
    }
    

      这里的代码都可以过:http://pelkira.hatenablog.jp/

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<map>
    #include<vector>
    #include<queue>
    #include<functional>
    #include<cstring>
    #include<cstdlib>
    #include<complex>
    using namespace std;
    typedef long long ll;
    typedef complex < double > Point;
    
    typedef vector < Point > Polygon;
    namespace std {
        bool operator < (Point a,Point b) {
            return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
        }
    }
    const double EPS = 1e-8;
    const double INF = 1e12;
    
    
    
    struct Line : Polygon{
        Line(){};
        Line(Point p,Point q){ push_back(p);push_back(q); }
    };
    double cross(Point p,Point q){
        return imag(conj(p)*q);
    }
    double dot(Point p,Point q){
        return real(conj(p)*q);
    }
    
    int ccw(Point a,Point b,Point c){
        b-=a,c-=a;
        if(cross(b,c)>0)return 1; //反時計回り
        if(cross(b,c)<0)return -1; //時計回り
        if(dot(b,c)<0)return 2; //直線上に c - a - b
        if(norm(b)<norm(c))return -2; // 直線上に a - b - c
        return 0; // 直線上に a - c - b
    }
    
    bool intersectSS(Line s, Line t) {
        return ccw(s[0],s[1],t[0])*ccw(s[0],s[1],t[1]) <= 0 &&
             ccw(t[0],t[1],s[0])*ccw(t[0],t[1],s[1]) <= 0;
    }
    bool intersectSP(Line s, Point p) {
        return abs(s[0]-p)+abs(s[1]-p)-abs(s[1]-s[0]) < EPS; // triangle inequality
    }
    Polygon ConvexHull(Polygon ps) {//凸包
        int n = ps.size(), k = 0;
        if(n == 1)return ps;
        sort(ps.begin(), ps.end());
        Polygon ch(2*n);
        for (int i = 0; i < n; ch[k++] = ps[i++]) // lower-hull
            while (k >= 2 && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) --k;
        for (int i = n-2, t = k+1; i >= 0; ch[k++] = ps[i--]) // upper-hull
            while (k >= t && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) --k;
        ch.resize(k-1);
        return ch;
    }
    
    // Point - Vertex
    enum{OUT, ON, IN};
    int IsInnerPointVertex(Polygon ps,Point a){
        bool flg = false;
        for(int i = 0;i < ps.size();i++){
            Point p = ps[i] - a,q = ps[(i+1)%ps.size()] - a;
            if(imag(p)>imag(q))swap(p,q);
            if(imag(p)<=0&&0<imag(q)){
                if(cross(p,q) < 0)flg = !flg;
            }
            if(cross(p,q) == 0 && dot(p,q) <= 0)return ON;
        }
        return flg ? IN : OUT;
    }
    int main(){
        int n,m;
        while(cin>>n>>m,n){
            Polygon G,H;
            for(int i = 0;i < n;i++){
                double x,y;
                cin>>x>>y;
                G.push_back(Point(x,y));
            }
            for(int i = 0;i < m;i++){
                double x,y;
                cin>>x>>y;
                H.push_back(Point(x,y));
            }
            G = ConvexHull(G);
            H = ConvexHull(H);
            int g = G.size(),h = H.size();
            //cout<<g<<" "<<h<<endl;
            if(g > h)swap(G,H);
            g = G.size(),h = H.size();
            bool flg = true;
            for(int i = 0;i < g;i++){
                if(IsInnerPointVertex(H,G[i]) != OUT){
                    flg = false;
                    break;
                }
            }
            for(int i = 0;i < h;i++){
                if(IsInnerPointVertex(G,H[i]) != OUT){
                    flg = false;
                    break;
                }
            }
    
            if(h == 1)flg = true;
            else if(g == 1 && h == 2){
                flg = !(intersectSP(Line(H[0],H[1]),G[0]));
            }
            else if(g == 2 && h == 2){
                flg = !(intersectSS(Line(G[0],G[1]),Line(H[0],H[1])));
            }
            else if(g == 2){
                flg = true;
                for(int i = 0;i < h;i++){
                    int j = (i+1)%h;
                    if(intersectSS(Line(G[0],G[1]),Line(H[i],H[j])))flg = false;
                }
            }
            if(flg)cout<<"YES"<<endl;
            else cout<<"NO"<<endl;
        }
        return 0;
    }
    

      

  • 相关阅读:
    [NLP] 语义网络与知识图谱入门(二)
    [NLP] 语义网络与知识图谱入门(一)
    [论文理解] LFFD: A Light and Fast Face Detector for Edge Devices
    [学习笔记] 匈牙利匹配
    [NLP] nlp-lstm-cos -> sin
    [ros] ros入门记录
    [推荐系统] 两种协同过滤
    [NN] Guided Backpropgation 可视化
    [torch] pytorch hook学习
    python高级编程和算法
  • 原文地址:https://www.cnblogs.com/xuesu/p/4328923.html
Copyright © 2020-2023  润新知