• hdu 1195 Open the Lock


    Open the Lock

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4534    Accepted Submission(s): 1993


    Problem Description
    Now an emergent task for you is to open a password lock. The password is consisted of four digits. Each digit is numbered from 1 to 9. 
    Each time, you can add or minus 1 to any digit. When add 1 to '9', the digit will change to be '1' and when minus 1 to '1', the digit will change to be '9'. You can also exchange the digit with its neighbor. Each action will take one step.

    Now your task is to use minimal steps to open the lock.

    Note: The leftmost digit is not the neighbor of the rightmost digit.
     
    Input
    The input file begins with an integer T, indicating the number of test cases. 

    Each test case begins with a four digit N, indicating the initial state of the password lock. Then followed a line with anotther four dight M, indicating the password which can open the lock. There is one blank line after each test case.
     
    Output
    For each test case, print the minimal steps in one line.
     
    Sample Input
    2
    1234
    2144
    1111
    9999
     
    Sample Output
    2
    4
     
    Author
    YE, Kai
     
    Source
     
     
    PS:思路来自其他大神
    还是功力不足啊,针对一个数,就只有三种情况,+1(4),-1(4),与邻位交换(3),也就是说一个4位数,动一次可以有12种变化
     
      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cmath>
      4 #include<cstdlib>
      5 #include<cstring>
      6 #include<queue>
      7 using namespace std;
      8 struct node{
      9     int num[6];
     10     int step;
     11 };
     12 node first,last;
     13 bool vis[10][10][10][10],flag;
     14 
     15 int bfs()
     16 {
     17     node p,q;
     18     int i;
     19     memset(vis,false,sizeof(vis));
     20     queue<struct node>Q;
     21     first.step=0;
     22     p=first;
     23     vis[p.num[0]][p.num[1]][p.num[2]][p.num[3]]=true;
     24     Q.push(p);
     25     while(!Q.empty())
     26     {
     27         flag=true;
     28         p=Q.front();
     29         Q.pop();
     30         for(i=0;i<4;i++)
     31         {
     32             if(p.num[i]!=last.num[i])
     33             {
     34                 flag=false;
     35                 break;
     36             }
     37         }
     38         if(flag)
     39         {
     40             return p.step;
     41         }
     42         for(i=0;i<4;i++)//加法
     43         {
     44             q=p;
     45             if(p.num[i]==9)
     46             q.num[i]=1;
     47             else
     48             q.num[i]=p.num[i]+1;
     49             q.step=p.step+1;
     50             if(!vis[q.num[0]][q.num[1]][q.num[2]][q.num[3]])
     51             {
     52                 vis[q.num[0]][q.num[1]][q.num[2]][q.num[3]]=true;
     53                 Q.push(q);
     54             }
     55         }
     56         for(i=0;i<4;i++)//减法
     57         {
     58             q=p;
     59             if(p.num[i]==1)
     60             q.num[i]=9;
     61             else
     62             q.num[i]=p.num[i]-1;
     63             q.step=p.step+1;
     64             if(!vis[q.num[0]][q.num[1]][q.num[2]][q.num[3]])
     65             {
     66                 vis[q.num[0]][q.num[1]][q.num[2]][q.num[3]]=true;
     67                 Q.push(q);
     68             }
     69         }
     70         for(i=0;i<3;i++)//邻位交换
     71         {
     72             q=p;
     73             if(q.num[i+1]!=p.num[i])
     74             {
     75                 q.num[i+1]=p.num[i];
     76                 q.num[i]=p.num[i+1];
     77             }
     78             q.step=p.step+1;
     79             if(!vis[q.num[0]][q.num[1]][q.num[2]][q.num[3]])
     80             {
     81                 vis[q.num[0]][q.num[1]][q.num[2]][q.num[3]]=true;
     82                 Q.push(q);
     83             }
     84         }
     85     }
     86     return 0;
     87 }
     88 
     89 
     90 int main()
     91 {
     92     int n;
     93     char s1[6],s2[6];
     94     scanf("%d",&n);
     95     while(n--)
     96     {
     97         int i;
     98         scanf("%s%s",s1,s2);
     99         for(i=0;i<4;i++)
    100         {
    101             first.num[i]=s1[i]-'0';
    102             last.num[i]=s2[i]-'0';
    103         }
    104         int count;
    105         count=bfs();
    106         printf("%d
    ",count);
    107 
    108     }
    109     return 0;
    110 }
    View Code
  • 相关阅读:
    安装固态硬盘,小米笔记本13.3
    glut相关函数说明
    qt 显示中文
    简述FPS的计算方法
    【BZOJ3527】【ZJOI2014】—力(FFT)
    【BZOJ3653】【洛谷P3899】—谈笑风生(子弹滞销+长链剖分)
    【COGS2652】—天文密葬法(分数规划+长链剖分)
    【BZOJ3611】【HeOI2014】—大工程(虚树+dp)
    【BZOJ1758】【WC2010】—重建计划(点分治+分数规划)
    【BZOJ4765】—普通计算姬(分块+BIT)
  • 原文地址:https://www.cnblogs.com/xuesen1995/p/4125425.html
Copyright © 2020-2023  润新知