https://colab.research.google.com/drive/14MAOR5dy7EEl8s7vAc4r68_x67G77Yip
Detectron2 Beginner's Tutorial
Welcome to detectron2! This is the official colab tutorial of detectron2. Here, we will go through some basics usage of detectron2, including the following:
- Run inference on images or videos, with an existing detectron2 model
- Train a detectron2 model on a new dataset
You can make a copy of this tutorial by "File -> Open in playground mode" and play with it yourself. DO NOT request access to this tutorial.
Install detectron2
# install dependencies:
!pip install pyyaml==5.1
import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
!gcc --version
# opencv is pre-installed on colab
# install detectron2: (Colab has CUDA 10.1 + torch 1.7)
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
import torch
assert torch.__version__.startswith("1.7")
!pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.7/index.html
# exit(0) # After installation, you need to "restart runtime" in Colab. This line can also restart runtime
# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
# import some common libraries
import numpy as np
import os, json, cv2, random
from google.colab.patches import cv2_imshow
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
Run a pre-trained detectron2 model
We first download an image from the COCO dataset:
!wget http://images.cocodataset.org/val2017/000000439715.jpg -q -O input.jpg
im = cv2.imread("./input.jpg")
cv2_imshow(im)
Then, we create a detectron2 config and a detectron2 DefaultPredictor
to run inference on this image.
cfg = get_cfg()
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)
outputs = predictor(im)
# look at the outputs. See https://detectron2.readthedocs.io/tutorials/models.html#model-output-format for specification
print(outputs["instances"].pred_classes)
print(outputs["instances"].pred_boxes)
tensor([17, 0, 0, 0, 0, 0, 0, 0, 25, 0, 25, 25, 0, 0, 24],
device='cuda:0')
Boxes(tensor([[126.6035, 244.8977, 459.8291, 480.0000],
[251.1083, 157.8127, 338.9731, 413.6379],
[114.8496, 268.6864, 148.2352, 398.8111],
[ 0.8217, 281.0327, 78.6072, 478.4210],
[ 49.3954, 274.1229, 80.1545, 342.9808],
[561.2248, 271.5816, 596.2755, 385.2552],
[385.9072, 270.3125, 413.7130, 304.0397],
[515.9295, 278.3744, 562.2792, 389.3802],
[335.2409, 251.9167, 414.7491, 275.9375],
[350.9300, 269.2060, 386.0984, 297.9081],
[331.6292, 230.9996, 393.2759, 257.2009],
[510.7349, 263.2656, 570.9865, 295.9194],
[409.0841, 271.8646, 460.5582, 356.8722],
[506.8767, 283.3257, 529.9403, 324.0392],
[594.5663, 283.4820, 609.0577, 311.4124]], device='cuda:0'))
# We can use `Visualizer` to draw the predictions on the image.
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
Train on a custom dataset
In this section, we show how to train an existing detectron2 model on a custom dataset in a new format.
We use the balloon segmentation dataset
which only has one class: balloon.
We'll train a balloon segmentation model from an existing model pre-trained on COCO dataset, available in detectron2's model zoo.
Note that COCO dataset does not have the "balloon" category. We'll be able to recognize this new class in a few minutes.
Prepare the dataset
# download, decompress the data
!wget https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip
!unzip balloon_dataset.zip > /dev/null
Register the balloon dataset to detectron2, following the detectron2 custom dataset tutorial.
Here, the dataset is in its custom format, therefore we write a function to parse it and prepare it into detectron2's standard format. User should write such a function when using a dataset in custom format. See the tutorial for more details.
# if your dataset is in COCO format, this cell can be replaced by the following three lines:
# from detectron2.data.datasets import register_coco_instances
# register_coco_instances("my_dataset_train", {}, "json_annotation_train.json", "path/to/image/dir")
# register_coco_instances("my_dataset_val", {}, "json_annotation_val.json", "path/to/image/dir")
from detectron2.structures import BoxMode
def get_balloon_dicts(img_dir):
json_file = os.path.join(img_dir, "via_region_data.json")
with open(json_file) as f:
imgs_anns = json.load(f)
dataset_dicts = []
for idx, v in enumerate(imgs_anns.values()):
record = {}
filename = os.path.join(img_dir, v["filename"])
height, width = cv2.imread(filename).shape[:2]
record["file_name"] = filename
record["image_id"] = idx
record["height"] = height
record["width"] = width
annos = v["regions"]
objs = []
for _, anno in annos.items():
assert not anno["region_attributes"]
anno = anno["shape_attributes"]
px = anno["all_points_x"]
py = anno["all_points_y"]
poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)]
poly = [p for x in poly for p in x]
obj = {
"bbox": [np.min(px), np.min(py), np.max(px), np.max(py)],
"bbox_mode": BoxMode.XYXY_ABS,
"segmentation": [poly],
"category_id": 0,
}
objs.append(obj)
record["annotations"] = objs
dataset_dicts.append(record)
return dataset_dicts
for d in ["train", "val"]:
DatasetCatalog.register("balloon_" + d, lambda d=d: get_balloon_dicts("balloon/" + d))
MetadataCatalog.get("balloon_" + d).set(thing_classes=["balloon"])
balloon_metadata = MetadataCatalog.get("balloon_train")
To verify the data loading is correct, let's visualize the annotations of randomly selected samples in the training set:
dataset_dicts = get_balloon_dicts("balloon/train")
for d in random.sample(dataset_dicts, 3):
img = cv2.imread(d["file_name"])
visualizer = Visualizer(img[:, :, ::-1], metadata=balloon_metadata, scale=0.5)
out = visualizer.draw_dataset_dict(d)
cv2_imshow(out.get_image()[:, :, ::-1])
Train!
Now, let's fine-tune a COCO-pretrained R50-FPN Mask R-CNN model on the balloon dataset. It takes ~6 minutes to train 300 iterations on Colab's K80 GPU, or ~2 minutes on a P100 GPU.
from detectron2.engine import DefaultTrainer
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("balloon_train",)
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # faster, and good enough for this toy dataset (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (ballon). (see https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)
# NOTE: this config means the number of classes, but a few popular unofficial tutorials incorrect uses num_classes+1 here.
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()
[11/06 01:35:37 d2.engine.defaults]: Model:
GeneralizedRCNN(
(backbone): FPN(
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(top_block): LastLevelMaxPool()
(bottom_up): ResNet(
(stem): BasicStem(
(conv1): Conv2d(
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
)
(res2): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv1): Conv2d(
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv2): Conv2d(
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
)
(conv3): Conv2d(
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
)
(res3): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv1): Conv2d(
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(3): BottleneckBlock(
(conv1): Conv2d(
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv2): Conv2d(
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
)
(conv3): Conv2d(
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
)
(res4): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
(conv1): Conv2d(
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(3): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(4): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(5): BottleneckBlock(
(conv1): Conv2d(
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
(conv3): Conv2d(
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
)
(res5): Sequential(
(0): BottleneckBlock(
(shortcut): Conv2d(
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
(conv1): Conv2d(
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
(1): BottleneckBlock(
(conv1): Conv2d(
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
(2): BottleneckBlock(
(conv1): Conv2d(
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv2): Conv2d(
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
(conv3): Conv2d(
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
)
)
)
(proposal_generator): RPN(
(rpn_head): StandardRPNHead(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
)
(anchor_generator): DefaultAnchorGenerator(
(cell_anchors): BufferList()
)
)
(roi_heads): StandardROIHeads(
(box_pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
)
)
(box_head): FastRCNNConvFCHead(
(flatten): Flatten(start_dim=1, end_dim=-1)
(fc1): Linear(in_features=12544, out_features=1024, bias=True)
(fc_relu1): ReLU()
(fc2): Linear(in_features=1024, out_features=1024, bias=True)
(fc_relu2): ReLU()
)
(box_predictor): FastRCNNOutputLayers(
(cls_score): Linear(in_features=1024, out_features=2, bias=True)
(bbox_pred): Linear(in_features=1024, out_features=4, bias=True)
)
(mask_pooler): ROIPooler(
(level_poolers): ModuleList(
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
)
)
(mask_head): MaskRCNNConvUpsampleHead(
(mask_fcn1): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(activation): ReLU()
)
(mask_fcn2): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(activation): ReLU()
)
(mask_fcn3): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(activation): ReLU()
)
(mask_fcn4): Conv2d(
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
(activation): ReLU()
)
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
(deconv_relu): ReLU()
(predictor): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1))
)
)
)
[11/06 01:35:39 d2.data.build]: Removed 0 images with no usable annotations. 61 images left.
[11/06 01:35:39 d2.data.build]: Distribution of instances among all 1 categories:
| category | #instances |
|:----------:|:-------------|
| balloon | 255 |
| | |
[11/06 01:35:39 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()]
[11/06 01:35:39 d2.data.build]: Using training sampler TrainingSampler
[11/06 01:35:39 d2.data.common]: Serializing 61 elements to byte tensors and concatenating them all ...
[11/06 01:35:39 d2.data.common]: Serialized dataset takes 0.17 MiB
Skip loading parameter 'roi_heads.box_predictor.cls_score.weight' to the model due to incompatible shapes: (81, 1024) in the checkpoint but (2, 1024) in the model! You might want to double check if this is expected.
Skip loading parameter 'roi_heads.box_predictor.cls_score.bias' to the model due to incompatible shapes: (81,) in the checkpoint but (2,) in the model! You might want to double check if this is expected.
Skip loading parameter 'roi_heads.box_predictor.bbox_pred.weight' to the model due to incompatible shapes: (320, 1024) in the checkpoint but (4, 1024) in the model! You might want to double check if this is expected.
Skip loading parameter 'roi_heads.box_predictor.bbox_pred.bias' to the model due to incompatible shapes: (320,) in the checkpoint but (4,) in the model! You might want to double check if this is expected.
Skip loading parameter 'roi_heads.mask_head.predictor.weight' to the model due to incompatible shapes: (80, 256, 1, 1) in the checkpoint but (1, 256, 1, 1) in the model! You might want to double check if this is expected.
Skip loading parameter 'roi_heads.mask_head.predictor.bias' to the model due to incompatible shapes: (80,) in the checkpoint but (1,) in the model! You might want to double check if this is expected.
[11/06 01:35:44 d2.engine.train_loop]: Starting training from iteration 0
[11/06 01:35:53 d2.utils.events]: eta: 0:02:04 iter: 19 total_loss: 2.046 loss_cls: 0.6769 loss_box_reg: 0.5966 loss_mask: 0.685 loss_rpn_cls: 0.02908 loss_rpn_loc: 0.008902 time: 0.4490 data_time: 0.0259 lr: 4.9953e-06 max_mem: 2724M
[11/06 01:36:02 d2.utils.events]: eta: 0:01:53 iter: 39 total_loss: 2.083 loss_cls: 0.6601 loss_box_reg: 0.7223 loss_mask: 0.6551 loss_rpn_cls: 0.02151 loss_rpn_loc: 0.007349 time: 0.4379 data_time: 0.0069 lr: 9.9902e-06 max_mem: 2724M
[11/06 01:36:11 d2.utils.events]: eta: 0:01:46 iter: 59 total_loss: 1.829 loss_cls: 0.5824 loss_box_reg: 0.5576 loss_mask: 0.6056 loss_rpn_cls: 0.03342 loss_rpn_loc: 0.007773 time: 0.4432 data_time: 0.0068 lr: 1.4985e-05 max_mem: 2724M
[11/06 01:36:19 d2.utils.events]: eta: 0:01:36 iter: 79 total_loss: 1.664 loss_cls: 0.495 loss_box_reg: 0.612 loss_mask: 0.5251 loss_rpn_cls: 0.0398 loss_rpn_loc: 0.008393 time: 0.4408 data_time: 0.0078 lr: 1.998e-05 max_mem: 2724M
[11/06 01:36:28 d2.utils.events]: eta: 0:01:28 iter: 99 total_loss: 1.653 loss_cls: 0.4368 loss_box_reg: 0.6527 loss_mask: 0.4676 loss_rpn_cls: 0.02758 loss_rpn_loc: 0.005817 time: 0.4405 data_time: 0.0076 lr: 2.4975e-05 max_mem: 2724M
[11/06 01:36:37 d2.utils.events]: eta: 0:01:19 iter: 119 total_loss: 1.604 loss_cls: 0.4126 loss_box_reg: 0.7145 loss_mask: 0.4098 loss_rpn_cls: 0.0417 loss_rpn_loc: 0.00942 time: 0.4400 data_time: 0.0060 lr: 2.997e-05 max_mem: 2724M
[11/06 01:36:46 d2.utils.events]: eta: 0:01:10 iter: 139 total_loss: 1.46 loss_cls: 0.3711 loss_box_reg: 0.6621 loss_mask: 0.3871 loss_rpn_cls: 0.02824 loss_rpn_loc: 0.01492 time: 0.4409 data_time: 0.0072 lr: 3.4965e-05 max_mem: 2724M
[11/06 01:36:55 d2.utils.events]: eta: 0:01:02 iter: 159 total_loss: 1.283 loss_cls: 0.2932 loss_box_reg: 0.6513 loss_mask: 0.3031 loss_rpn_cls: 0.01643 loss_rpn_loc: 0.003501 time: 0.4432 data_time: 0.0076 lr: 3.996e-05 max_mem: 2724M
[11/06 01:37:04 d2.utils.events]: eta: 0:00:53 iter: 179 total_loss: 1.307 loss_cls: 0.29 loss_box_reg: 0.724 loss_mask: 0.2765 loss_rpn_cls: 0.01487 loss_rpn_loc: 0.01075 time: 0.4436 data_time: 0.0080 lr: 4.4955e-05 max_mem: 2724M
[11/06 01:37:13 d2.utils.events]: eta: 0:00:44 iter: 199 total_loss: 1.181 loss_cls: 0.2553 loss_box_reg: 0.6373 loss_mask: 0.2437 loss_rpn_cls: 0.02367 loss_rpn_loc: 0.008626 time: 0.4436 data_time: 0.0078 lr: 4.995e-05 max_mem: 2724M
[11/06 01:37:22 d2.utils.events]: eta: 0:00:35 iter: 219 total_loss: 1.048 loss_cls: 0.213 loss_box_reg: 0.625 loss_mask: 0.2106 loss_rpn_cls: 0.02227 loss_rpn_loc: 0.005251 time: 0.4452 data_time: 0.0057 lr: 5.4945e-05 max_mem: 2724M
[11/06 01:37:31 d2.utils.events]: eta: 0:00:26 iter: 239 total_loss: 1.049 loss_cls: 0.2045 loss_box_reg: 0.6159 loss_mask: 0.184 loss_rpn_cls: 0.01542 loss_rpn_loc: 0.008343 time: 0.4462 data_time: 0.0071 lr: 5.994e-05 max_mem: 2832M
[11/06 01:37:41 d2.utils.events]: eta: 0:00:17 iter: 259 total_loss: 0.9736 loss_cls: 0.1754 loss_box_reg: 0.5704 loss_mask: 0.162 loss_rpn_cls: 0.01074 loss_rpn_loc: 0.006589 time: 0.4480 data_time: 0.0069 lr: 6.4935e-05 max_mem: 2832M
[11/06 01:37:50 d2.utils.events]: eta: 0:00:08 iter: 279 total_loss: 0.8728 loss_cls: 0.151 loss_box_reg: 0.5358 loss_mask: 0.1624 loss_rpn_cls: 0.01978 loss_rpn_loc: 0.009639 time: 0.4488 data_time: 0.0075 lr: 6.993e-05 max_mem: 2832M
[11/06 01:38:00 d2.utils.events]: eta: 0:00:00 iter: 299 total_loss: 0.7729 loss_cls: 0.1192 loss_box_reg: 0.4951 loss_mask: 0.1248 loss_rpn_cls: 0.01628 loss_rpn_loc: 0.003562 time: 0.4498 data_time: 0.0080 lr: 7.4925e-05 max_mem: 2832M
[11/06 01:38:01 d2.engine.hooks]: Overall training speed: 298 iterations in 0:02:14 (0.4499 s / it)
[11/06 01:38:01 d2.engine.hooks]: Total training time: 0:02:16 (0:00:02 on hooks)
# Look at training curves in tensorboard:
%load_ext tensorboard
%tensorboard --logdir output
Inference & evaluation using the trained model
Now, let's run inference with the trained model on the balloon validation dataset. First, let's create a predictor using the model we just trained:
# Inference should use the config with parameters that are used in training
# cfg now already contains everything we've set previously. We changed it a little bit for inference:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
predictor = DefaultPredictor(cfg)
Then, we randomly select several samples to visualize the prediction results.
from detectron2.utils.visualizer import ColorMode
dataset_dicts = get_balloon_dicts("balloon/val")
for d in random.sample(dataset_dicts, 3):
im = cv2.imread(d["file_name"])
outputs = predictor(im) # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format
v = Visualizer(im[:, :, ::-1],
metadata=balloon_metadata,
scale=0.5,
instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels. This option is only available for segmentation models
)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
```
We can also evaluate its performance using AP metric implemented in COCO API.
This gives an AP of ~70. Not bad!
from detectron2.evaluation import COCOEvaluator, inference_on_dataset
from detectron2.data import build_detection_test_loader
evaluator = COCOEvaluator("balloon_val", ("bbox", "segm"), False, output_dir="./output/")
val_loader = build_detection_test_loader(cfg, "balloon_val")
print(inference_on_dataset(trainer.model, val_loader, evaluator))
# another equivalent way to evaluate the model is to use `trainer.test`
[07/08 22:50:43 d2.evaluation.coco_evaluation]: 'balloon_val' is not registered by `register_coco_instances`. Therefore trying to convert it to COCO format ...
[07/08 22:50:43 d2.data.datasets.coco]: Converting annotations of dataset 'balloon_val' to COCO format ...)
[07/08 22:50:43 d2.data.datasets.coco]: Converting dataset dicts into COCO format
[07/08 22:50:43 d2.data.datasets.coco]: Conversion finished, #images: 13, #annotations: 50
[07/08 22:50:43 d2.data.datasets.coco]: Caching COCO format annotations at './output/balloon_val_coco_format.json' ...
[07/08 22:50:44 d2.data.build]: Distribution of instances among all 1 categories:
| category | #instances |
|:----------:|:-------------|
| balloon | 50 |
| | |
[07/08 22:50:44 d2.data.common]: Serializing 13 elements to byte tensors and concatenating them all ...
[07/08 22:50:44 d2.data.common]: Serialized dataset takes 0.04 MiB
[07/08 22:50:44 d2.data.dataset_mapper]: Augmentations used in training: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')]
[07/08 22:50:44 d2.evaluation.evaluator]: Start inference on 13 images
[07/08 22:50:52 d2.evaluation.evaluator]: Inference done 11/13. 0.1931 s / img. ETA=0:00:00
[07/08 22:50:53 d2.evaluation.evaluator]: Total inference time: 0:00:02.607042 (0.325880 s / img per device, on 1 devices)
[07/08 22:50:53 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:01 (0.186243 s / img per device, on 1 devices)
[07/08 22:50:53 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[07/08 22:50:53 d2.evaluation.coco_evaluation]: Saving results to ./output/coco_instances_results.json
[07/08 22:50:53 d2.evaluation.coco_evaluation]: Evaluating predictions ...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
COCOeval_opt.evaluate() finished in 0.01 seconds.
Accumulating evaluation results...
COCOeval_opt.accumulate() finished in 0.00 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.668
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.847
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.797
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.239
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.795
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.222
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.704
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.766
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.567
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.659
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.847
[07/08 22:50:53 d2.evaluation.coco_evaluation]: Evaluation results for bbox:
| AP | AP50 | AP75 | APs | APm | APl |
|:------:|:------:|:------:|:------:|:------:|:------:|
| 66.758 | 84.719 | 79.685 | 23.917 | 54.933 | 79.514 |
Loading and preparing results...
DONE (t=0.01s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *segm*
COCOeval_opt.evaluate() finished in 0.01 seconds.
Accumulating evaluation results...
COCOeval_opt.accumulate() finished in 0.00 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.768
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.842
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.840
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.058
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.565
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.936
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.248
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.782
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.842
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.600
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.688
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.953
[07/08 22:50:53 d2.evaluation.coco_evaluation]: Evaluation results for segm:
| AP | AP50 | AP75 | APs | APm | APl |
|:------:|:------:|:------:|:-----:|:------:|:------:|
| 76.799 | 84.203 | 83.958 | 5.838 | 56.506 | 93.572 |
OrderedDict([('bbox',
{'AP': 66.7575984802854,
'AP50': 84.71906024215401,
'AP75': 79.6850976022887,
'APl': 79.51426848548515,
'APm': 54.933394319629045,
'APs': 23.917443214909724}),
('segm',
{'AP': 76.79883944079043,
'AP50': 84.20295316611471,
'AP75': 83.95779282808186,
'APl': 93.57150630750836,
'APm': 56.50588544163433,
'APs': 5.8381956414264895})])
Other types of builtin models
# Inference with a keypoint detection model
cfg = get_cfg() # get a fresh new config
cfg.merge_from_file(model_zoo.get_config_file("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set threshold for this model
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml")
predictor = DefaultPredictor(cfg)
outputs = predictor(im)
v = Visualizer(im[:,:,::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
# Inference with a panoptic segmentation model
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml"))
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")
predictor = DefaultPredictor(cfg)
panoptic_seg, segments_info = predictor(im)["panoptic_seg"]
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_panoptic_seg_predictions(panoptic_seg.to("cpu"), segments_info)
cv2_imshow(out.get_image()[:, :, ::-1])
Run panoptic segmentation on a video
# This is the video we're going to process
from IPython.display import YouTubeVideo, display
video = YouTubeVideo("ll8TgCZ0plk", width=500)
display(video)
# Install dependencies, download the video, and crop 5 seconds for processing
!pip install youtube-dl
!pip uninstall -y opencv-python-headless opencv-contrib-python
!apt install python3-opencv # the one pre-installed have some issues
!youtube-dl https://www.youtube.com/watch?v=ll8TgCZ0plk -f 22 -o video.mp4
!ffmpeg -i video.mp4 -t 00:00:06 -c:v copy video-clip.mp4
# Run frame-by-frame inference demo on this video (takes 3-4 minutes) with the "demo.py" tool we provided in the repo.
!git clone https://github.com/facebookresearch/detectron2
!python detectron2/demo/demo.py --config-file detectron2/configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml --video-input video-clip.mp4 --confidence-threshold 0.6 --output video-output.mkv
--opts MODEL.WEIGHTS detectron2://COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl
# Download the results
from google.colab import files
files.download('video-output.mkv')