• anaconda3 安装opencv3.4.2 cuda9.2 mint19(ubuntu 18.04)


    从opencv1的时代,编译这玩意就不是太轻松。之前都是在win下。2.x时代,开始用cmake GUI,选vs版本,x86 x64 各种依赖库选项,debug release,...

    现在3.4了,在ubuntu下也不是太容易。

    人老了,懒得自己折腾了,先凑合在anaconda3下用别人编译好现成的opencv,用python随便试试算法吧。

    实在不行了,再自己编译opencv,纯用C++写吧。

     根据opencv官网17年的说法,目前opencv的python接口还是无法直接使用自定义的cuda GpuMat之类。

    http://answers.opencv.org/question/172135/how-to-use-cuda-in-pyhton/

    但是调用C++封装的使用gpu的算法是没问题的!。所以,用python做这个粘合剂,在anaconda环境里查看效果,还是很好的。

    1用C++ 版的opencv写gpu版的算法,打包

    2 在anaconda中,用py调用,间接使用gpu

    本文主要解决2的问题。

    1配置cuda 9.2

    分2步

    1host安装配置cuda

    2anaconda配置路径(找到本机的cuda bin和lib64路径)

    1.1安装cuda 9.2

    现在nv官网还没有针对ubuntu 18.04的deb包,要用runfile安装。

    但如果一路yes是要安装396.37显卡驱动的,这种安装方法必须停掉X window。而我这种懒人用的是mint的GUI,不想折腾CLI了,所以拆成两步:

    1 单独用第三方源安装显卡驱动到396.54

    2 安装cuda时选择不安装显卡驱动,其他选择一路默认

    用第三方源安装显卡驱动:

    sudo add-apt-repository ppa:graphics-drivers/ppa

    然后在GUI  系统管理,驱动管理器里,应该就能看到396.54了,点击切换就可以了

    也可以用命令行

    sudo apt install nvidia-driver-396
    sudo apt install nvidia-settings

    但是安装好之后,还要根据提示配置PATH和LD_LIBRARY_PATH, 这是为了在host机器上能使用nvcc以及找到各种cuda的so

    sudo xed ~/.profile

    加入

    PATH="/usr/local/cuda/bin:$PATH"

    LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"

    LIBRARY_PATH="/usr/local/cuda/lib64:$LIBRARY_PATH"

    为了python,以防万一,也加上

    PYTHONPATH="/usr/bin:$PYTHONPATH"
    PYTHONPATH="/usr/local/cuda/lib64:$PYTHONPATH"
    PYTHONPATH="/usr/local/cuda/bin:$PYTHONPATH"

    保存,关闭

    source ~/.profile 

    nvcc -V

    应该能看到

    本机的cuda已经配好。

    1.2 anaconda3中cuda有关路径

    在 anaconda-navigator  Environments里下面点create,新建一个env,比如cuda-opencv。

    anaconda的每个env和pipenv之类的类似,都是独立安装库的隔离环境。

    创建完毕在~/anaconda3/envs下就会出现cuda-opencv子目录,里面就是各种安装的库。

    创建一些文件,让cuda-opencv每次启动时,能找到host的cuda库就可以了

    参考https://stackoverflow.com/questions/46826497/conda-set-ld-library-path-for-env-only

    在anaconda-navigator  ->Environments->  cuda-opencv 箭头上点击,启动一个终端

    mkdir -p ./etc/conda/activate.d
    mkdir -p ./etc/conda/deactivate.d
    touch ./etc/conda/activate.d/env_vars.sh
    touch ./etc/conda/deactivate.d/env_vars.sh

    类似python的virualenv 每次启动时会activate,那么sh脚本里export变量就行了

    编辑启动env的脚本

    xed ./etc/conda/activate.d/env_vars.sh

    加入

    export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH}
    export LIBRARY_PATH=/usr/local/cuda/lib64:${LIBRARY_PATH}
    export PATH=/usr/local/cuda/bin:${PATH}

    保存退出。

    cuda是否配好,要在下面装好opencv之后才能判断。

    2 安装opencv-cuda

    有好事之徒(好心人)已经编译了opencv3.4.2带cuda的版本,直接用env的控制台安装

    conda install -c oddconcepts opencv-cuda 

    在spyder IDE里 import cv2

    会提示,找不到libjasper.so.1

    这是因为ubuntu 在17.04之后取消了libjasper-dev了,(按其他教程要装这个那都是ubuntu 16.04的,在18.04里是装不上的)

    Note that libjasper-dev has been removed from Ubuntu 17.04 (https://launchpad.net/ubuntu/zesty/amd64/libjasper-dev/1.900.1-debian1-2.4+deb8u1), and they suggest to use OpenJPEG instead (https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=812630).

    Since OpenCV uses jasper trying to install it manually may be an option.

    那么还是在env里用conda装,但是注意不要搜libjasper,可能装上的是.a的静态库版本,那么还是会找不到.so

    这么装:

    conda install -c conda-forge jasper

    然后应该 import cv2时不报错。

    这时,检查一下opencv安装的情况:

    print(cv2.getBuildInformation())

    我这里的信息是:

    General configuration for OpenCV 3.4.2 =====================================
    Version control: 3.4.2

    Extra modules:
    Location (extra): /home/tee/anaconda3/conda-bld/opencv-cuda_1534922162608/work/opencv_contrib-3.4.2/modules
    Version control (extra): 3.4.2

    Platform:
    Timestamp: 2018-08-22T07:16:54Z
    Host: Linux 4.4.0-130-generic x86_64
    CMake: 3.9.4
    CMake generator: Unix Makefiles
    CMake build tool: /usr/bin/make
    Configuration: Release

    CPU/HW features:
    Baseline: SSE SSE2 SSE3
    requested: SSE3
    Dispatched code generation: SSE4_1 SSE4_2 FP16 AVX AVX2 AVX512_SKX
    requested: SSE4_1 SSE4_2 AVX FP16 AVX2 AVX512_SKX
    SSE4_1 (3 files): + SSSE3 SSE4_1
    SSE4_2 (1 files): + SSSE3 SSE4_1 POPCNT SSE4_2
    FP16 (1 files): + SSSE3 SSE4_1 POPCNT SSE4_2 FP16 AVX
    AVX (4 files): + SSSE3 SSE4_1 POPCNT SSE4_2 AVX
    AVX2 (8 files): + SSSE3 SSE4_1 POPCNT SSE4_2 FP16 FMA3 AVX AVX2
    AVX512_SKX (0 files): + SSSE3 SSE4_1 POPCNT SSE4_2 FP16 FMA3 AVX AVX2 AVX_512F AVX512_SKX

    C/C++:
    Built as dynamic libs?: YES
    C++ Compiler: /usr/bin/c++ (ver 5.4.0)
    C++ flags (Release): -I/home/machinelearning/anaconda3/envs/cuda-opencv/include -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -fvisibility-inlines-hidden -fopenmp -O3 -DNDEBUG -DNDEBUG
    C++ flags (Debug): -I/home/machinelearning/anaconda3/envs/cuda-opencv/include -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -fvisibility-inlines-hidden -fopenmp -g -O0 -DDEBUG -D_DEBUG
    C Compiler: /usr/bin/cc
    C flags (Release): -I/home/machinelearning/anaconda3/envs/cuda-opencv/include -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -fopenmp -O3 -DNDEBUG -DNDEBUG
    C flags (Debug): -I/home/machinelearning/anaconda3/envs/cuda-opencv/include -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections -msse -msse2 -msse3 -fvisibility=hidden -fopenmp -g -O0 -DDEBUG -D_DEBUG
    Linker flags (Release):
    Linker flags (Debug):
    ccache: NO
    Precompiled headers: YES
    Extra dependencies: dl m pthread rt cudart nppc nppial nppicc nppicom nppidei nppif nppig nppim nppist nppisu nppitc npps cublas cufft -L/usr/local/cuda/lib64
    3rdparty dependencies:

    OpenCV modules:
    To be built: aruco bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev datasets dpm face features2d flann freetype fuzzy hdf hfs highgui img_hash imgcodecs imgproc java_bindings_generator line_descriptor ml objdetect optflow phase_unwrapping photo plot python3 python_bindings_generator reg rgbd saliency shape stereo stitching structured_light superres surface_matching tracking video videoio videostab xfeatures2d ximgproc xobjdetect xphoto
    Disabled: js world
    Disabled by dependency: dnn_objdetect text
    Unavailable: cnn_3dobj cvv dnn java matlab ovis python2 sfm ts viz
    Applications: apps
    Documentation: NO
    Non-free algorithms: NO

    GUI:

    Media I/O:
    ZLib: /home/machinelearning/anaconda3/envs/cuda-opencv/lib/libz.so (ver 1.2.11)
    JPEG: build-libjpeg-turbo (ver 1.5.3-62)
    WEBP: build (ver encoder: 0x020e)
    PNG: build (ver 1.6.34)
    TIFF: build (ver 42 - 4.0.9)
    JPEG 2000: /usr/lib/x86_64-linux-gnu/libjasper.so (ver 1.900.1)
    OpenEXR: build (ver 1.7.1)
    HDR: YES
    SUNRASTER: YES
    PXM: YES

    Video I/O:
    DC1394: YES (ver 2.2.4)
    FFMPEG: YES
    avcodec: YES (ver 58.18.100)
    avformat: YES (ver 58.12.100)
    avutil: YES (ver 56.14.100)
    swscale: YES (ver 5.1.100)
    avresample: YES (ver 4.0.0)
    GStreamer: NO
    libv4l/libv4l2: NO
    v4l/v4l2: linux/videodev2.h
    gPhoto2: NO

    Parallel framework: OpenMP

    Trace: YES (with Intel ITT)

    Other third-party libraries:
    Intel IPP: 2017.0.3 [2017.0.3]
    at: /home/tee/anaconda3/conda-bld/opencv-cuda_1534922162608/work/build/3rdparty/ippicv/ippicv_lnx
    Intel IPP IW: sources (2017.0.3)
    at: /home/tee/anaconda3/conda-bld/opencv-cuda_1534922162608/work/build/3rdparty/ippicv/ippiw_lnx
    Lapack: NO
    Eigen: YES (ver 3.3.3)
    Custom HAL: NO

    NVIDIA CUDA: YES (ver 9.2, CUFFT CUBLAS)
    NVIDIA GPU arch: 30 35 37 50 52 60 61 70
    NVIDIA PTX archs:

    Python 3:
    Interpreter: /home/machinelearning/anaconda3/envs/cuda-opencv/bin/python (ver 3.6.6)
    Libraries: /home/machinelearning/anaconda3/envs/cuda-opencv/lib/libpython3.6m.so (ver 3.6.6)
    numpy: /home/machinelearning/anaconda3/envs/cuda-opencv/lib/python3.6/site-packages/numpy/core/include (ver 1.11.3)
    packages path: /home/machinelearning/anaconda3/envs/cuda-opencv/lib/python3.6/site-packages

    Python (for build): /home/machinelearning/anaconda3/envs/cuda-opencv/bin/python

    Java:
    ant: NO
    JNI: NO
    Java wrappers: NO
    Java tests: NO

    Install to: /home/machinelearning/anaconda3/envs/cuda-opencv
    -----------------------------------------------------------------

    标红的部分说明opencv成功找到了cuda。

    到此为止,前后折腾了快1天,可以看出,到处都有点小坑,但是不断拆成2小步,把某一小步替换掉,还是比较容易解决的。 

  • 相关阅读:
    序列化与反序列化
    JAVA常用设计模式(一、抽象工厂模式)
    JAVA基础部分复习(七、JAVA枚举类型使用)
    JAVA常用设计模式(一、单例模式、工厂模式)
    JAVA高级篇(二、JVM内存模型、内存管理之第一篇)
    JAVA高级篇(一、JVM基本概念)
    linux常用命令
    JAVA基础部分复习(六、常用关键字说明)
    JAVA基础部分复习(五、JAVA反射)
    JAVA基础部分复习(三、泛型)
  • 原文地址:https://www.cnblogs.com/xuanmanstein/p/9590854.html
Copyright © 2020-2023  润新知