• 树状数组


    树状数组(原文:http://www.cnblogs.com/zhangshu/archive/2011/08/16/2141396.html

      如果给定一个数组,要你求里面所有数的和,一般都会想到累加。但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了。所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多。下面就讲一下什么是树状数组:

       一般讲到树状数组都会少不了下面这个图:

            

             下面来分析一下上面那个图看能得出什么规律:

             据图可知:

        c1=a1,

        c2=a1+a2,

        c3=a3,

        c4=a1+a2+a3+a4,

        c5=a5,

        c6=a5+a6,

        c7=a7,

        c8=a1+a2+a3+a4+a5+a6+a7+a8,

        c9=a9,

        c10=a9+a10,

        c11=a11........c16=a1+a2+a3+a4+a5+.......+a16。

             分析上面的几组式子可知:

        (1)当 i 为奇数时,ci=ai ;

        (2)当 i 为偶数时,就要看 i 的因子中最多有二的多少次幂,例如,6 的因子中有 2 的一次幂,等于 2 ,所以 c6=a5+a6(由六向前数两个数的和),4 的因子中有 2 的两次幂,等于 4 ,所以 c4=a1+a2+a3+a4(由四向前数四个数的和)。

            (一)有公式:cn=a(n-a^k+1)+.........+an(其中 k 为 n 的二进制表示中从右往左数的 0 的个数)。

             那么,如何求 a^k 呢?求法如下:

        

    int lowbit(int n)
    {
        return n&(-n);
    }

       lowbit()的返回值就是 2^k 次方的值。

             求出来 2^k 之后,数组 c 的值就都出来了,接下来我们要求数组中所有元素的和。

           (二)求数组的和的算法如下:

           (1)首先,令sum=0,转向第二步;

           (2)接下来判断,如果 n>0 的话,就令sum=sum+cn转向第三步,否则的话,终止算法,返回 sum 的值;

           (3)n=n - lowbit(n)(将n的二进制表示的最后一个零删掉),回第二步。

             代码实现:

        

    int sum(int n)
    {
        int s=0;
        while(n>0)
        {
            s+=c[n];
            n-=lowbit(n);
        }
        return s;
    }

      (三)当数组中的元素有变更时,树状数组就发挥它的优势了,算法如下(修改为给某个节点 i 加上 x ):

             (1)当 i<=n 时,执行下一步;否则的话,算法结束;

             (2)ci=ci+x ,i=i+lowbit(i)(在 i 的二进制表示的最后加零),返回第一步。

              代码实现:

    void add(int i,int t)
    {
        while(i<=n)
        {
            c[i]+=t;
            i+=lowbit(i);
        }
    }
  • 相关阅读:
    Simple Automated Backups for MongoDB Replica Sets
    [转] matlab获取时间日期
    Matlab与C++混合编程 编写独立外部应用程序时出现“无法定位序数3906于动态链接库LIBEAY32.dll上”错误
    Visual Studio 控制台应用程序 同时使用OpenCV和matlab mat文件操作
    [转] Matlab与C++混合编程(依赖OpenCV)
    OpenCV 64位时 应用程序无法正常启动0x000007b 问题解决
    LinkedBlockingQueue多线程测试
    rdlc报告vs2008编辑正常,在vs2012在对错误的编辑
    SD3.0四个协议解读
    链队列
  • 原文地址:https://www.cnblogs.com/xl1027515989/p/3661970.html
Copyright © 2020-2023  润新知