本例用到的hadoop版本2.7.2 hbase版本1.2.2
hbase的表如下:
create 'ns2:user', 'info'
hdfs上的文本文件如下[data/hbase_input/hbase.txt]
1,xiejl,20
2,haha,30
3,liudehua,40
4,daoming,41
可以通过命令查看hadoop的classpath现在包含哪些jar包:
[hadoop@master ~]$ hdfs classpath
java的主方法:
package com.xjl456852.mapreduce;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import java.io.IOException;
/**
* 将hdfs中的文本文件写入到hbase的表中
* 程序的运行需要加入hadoop的配置文件和hbase的配置文件到jar包中
* 对应的hbase的表
* create 'ns2:user','info'
*
* Created by xiejl on 2016/8/10.
*/
public class HBaseApp {
public static void main(String [] args) {
try {
Job job = Job.getInstance();
job.setJobName("text into hbase table");
job.setJarByClass(HBaseApp.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
//设置表名
job.getConfiguration().set(TableOutputFormat.OUTPUT_TABLE, args[1]);
//设置输出格式为table
job.setOutputFormatClass(TableOutputFormat.class);
//设置输出的key类型为ImmutableBytesWritable
job.setOutputKeyClass(ImmutableBytesWritable.class);
//设置输出的value类型为Put
job.setOutputValueClass(Put.class);
//因为map输出key和reduce输出的key类型不一致,所以需要再设置map的key输出类型为Text
job.setMapOutputKeyClass(Text.class);
//因为map输出value和reduce输出的value类型不一致,所以需要再设置map的value输出类型为Text
job.setMapOutputValueClass(Text.class);
//Mapper
job.setMapperClass(MyMapper.class);
//Reducer
job.setReducerClass(MyReducer.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
}
}
Mapper类:
package com.xjl456852.mapreduce;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* Created by xiejl on 2016/8/10.
*/
public class MyMapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
int index = line.indexOf(",");
String rowKey = line.substring(0, index);
//跳过逗号
String valueLine = line.substring(index+1);
context.write(new Text(rowKey), new Text(valueLine));
}
}
Reducer类:
package com.xjl456852.mapreduce;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* Created by xiejl on 2016/8/11.
*/
public class MyReducer extends Reducer<Text, Text, ImmutableBytesWritable, Put> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
byte[] rowKey = Bytes.toBytes(key.toString());
for(Text text : values) {
//设置put对象的行键
Put put = new Put(rowKey);
String line = text.toString();
int index = line.indexOf(",");
String name = line.substring(0, index);
String age = line.substring(index+1);
//列族的是建表时固定的,列和值是插入时添加的.
put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("name"),Bytes.toBytes(name));
put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("age"),Bytes.toBytes(age));
context.write(new ImmutableBytesWritable(Bytes.toBytes(key.toString())), put);
}
}
}
将程序打为jar包,jar包中需要加入hadoop的配置文件和hbase的配置 (有人将程序打成胖包,就是将依赖的jar,依赖的四个类库hbase-client,hbase-server,hbase-common,hbsae-protocol放入lib目录中,我试验不行,会出现map和reduce任务都执行到100%时卡住不动,等十分钟又出现 FAILED AttemptID:attempt_xxx Timed out after 600 secs,然后又重新执行mapreduce任务,然后又卡住,得结束掉mapreduce进程才能终止)
需要修改集群的配置文件,以满足hadoop执行hbase表插入操作时,能找到相关的类库.
将HBase的类jar包加到hadoop的classpath下, 修改${HADOOP_HOME}/etc/hadoop/hadoop-env.sh。配置好这个文件,分发到各个节点,改这个配置不用重启集群.
TEMP=`ls /opt/modules/hbase/lib/*.jar`
HBASE_JARS=`echo $TEMP | sed 's/ /:/g'`
HADOOP_CLASSPATH=$HBASE_JARS
如果现在运行程序还是会出错,详情可以看我的另一篇文章.hadoop执行hbase插入表操作,出错:Stack trace: ExitCodeException exitCode=1:(xjl456852原创)
还需要在${HADOOP_HOME}/etc/hadoop/yarn-site.xml中加入mapreduce运行时需要的类库,需要设置yarn.application.classpath:
所以我在yarn-site.xml中加入了如下配置,并加入了hbase的lib目录,配置好这个文件,分发到各个节点,这个配置需要重启集群
<property>
<name>yarn.application.classpath</name>
<value>
/opt/modules/hadoop/etc/*,
/opt/modules/hadoop/etc/hadoop/*,
/opt/modules/hadoop/lib/*,
/opt/modules/hadoop/share/hadoop/common/*,
/opt/modules/hadoop/share/hadoop/common/lib/*,
/opt/modules/hadoop/share/hadoop/mapreduce/*,
/opt/modules/hadoop/share/hadoop/mapreduce/lib/*,
/opt/modules/hadoop/share/hadoop/hdfs/*,
/opt/modules/hadoop/share/hadoop/hdfs/lib/*,
/opt/modules/hadoop/share/hadoop/yarn/*,
/opt/modules/hadoop/share/hadoop/yarn/lib/*,
/opt/modules/hbase/lib/*
</value>
</property>
然后执行:
hadoop jar hbase.jar com.xjl456852.mapreduce.HBaseApp data/hbase_input ns2:user
查看hbase的表内容:
hbase(main):001:0> scan 'ns2:user'
ROW COLUMN+CELL
1 column=info:age, timestamp=1470966325326, value=20
1 column=info:name, timestamp=1470966325326, value=xiejl
2 column=info:age, timestamp=1470966325326, value=30
2 column=info:name, timestamp=1470966325326, value=haha
3 column=info:age, timestamp=1470966325326, value=40
3 column=info:name, timestamp=1470966325326, value=liudehua
4 column=info:age, timestamp=1470966325326, value=41
4 column=info:name, timestamp=1470966325326, value=daoming
4 row(s) in 0.3100 seconds
可以看到数据已经插入到hbase表中.
还可以将Reducer类写成继承TableReducer方式,代码如下,执行后会有同样的结果:
package com.xjl456852.mapreduce;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;
import java.io.IOException;
/**
* 如果继承TableReducer,从源码中可以看到,输出的value是Mutation类型,也就是输出的值可以是Put,Delete之类的类型
* Created by xiejl on 2016/8/11.
*/
public class MyReducer2 extends TableReducer<Text, Text, ImmutableBytesWritable> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
byte[] rowKey = Bytes.toBytes(key.toString());
for(Text text : values) {
//设置put对象的行键
Put put = new Put(rowKey);
String line = text.toString();
int index = line.indexOf(",");
String name = line.substring(0, index);
String age = line.substring(index+1);
//列族的是建表时固定的,列和值是插入时添加的.
put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("name"),Bytes.toBytes(name));
put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("age"),Bytes.toBytes(age));
context.write(new ImmutableBytesWritable(Bytes.toBytes(key.toString())), put);
}
context.getCounter("reduce", "over").increment(1);
}
}