• 【tensorflow2.0】构建模型的三种方法


    可以使用以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。

    对于顺序结构的模型,优先使用Sequential方法构建。

    如果模型有多输入或者多输出,或者模型需要共享权重,或者模型具有残差连接等非顺序结构,推荐使用函数式API进行创建。

    如果无特定必要,尽可能避免使用Model子类化的方式构建模型,这种方式提供了极大的灵活性,但也有更大的概率出错。

    下面以IMDB电影评论的分类问题为例,演示3种创建模型的方法。

    import numpy as np 
    import pandas as pd 
    import tensorflow as tf
    from tqdm import tqdm 
    from tensorflow.keras import *
     
     
    train_token_path = "./data/imdb/train_token.csv"
    test_token_path = "./data/imdb/test_token.csv"
     
    MAX_WORDS = 10000  # We will only consider the top 10,000 words in the dataset
    MAX_LEN = 200  # We will cut reviews after 200 words
    BATCH_SIZE = 20 
     
    # 构建管道
    def parse_line(line):
        t = tf.strings.split(line,"	")
        label = tf.reshape(tf.cast(tf.strings.to_number(t[0]),tf.int32),(-1,))
        features = tf.cast(tf.strings.to_number(tf.strings.split(t[1]," ")),tf.int32)
        return (features,label)
     
    ds_train=  tf.data.TextLineDataset(filenames = [train_token_path]) 
       .map(parse_line,num_parallel_calls = tf.data.experimental.AUTOTUNE) 
       .shuffle(buffer_size = 1000).batch(BATCH_SIZE) 
       .prefetch(tf.data.experimental.AUTOTUNE)
     
    ds_test=  tf.data.TextLineDataset(filenames = [test_token_path]) 
       .map(parse_line,num_parallel_calls = tf.data.experimental.AUTOTUNE) 
       .shuffle(buffer_size = 1000).batch(BATCH_SIZE) 
       .prefetch(tf.data.experimental.AUTOTUNE)

    一,Sequential按层顺序创建模型

    f.keras.backend.clear_session()
     
    model = models.Sequential()
     
    model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
    model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Flatten())
    model.add(layers.Dense(1,activation = "sigmoid"))
     
    model.compile(optimizer='Nadam',
                loss='binary_crossentropy',
                metrics=['accuracy',"AUC"])
     
    model.summary()
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    embedding (Embedding)        (None, 200, 7)            70000     
    _________________________________________________________________
    conv1d (Conv1D)              (None, 196, 64)           2304      
    _________________________________________________________________
    max_pooling1d (MaxPooling1D) (None, 98, 64)            0         
    _________________________________________________________________
    conv1d_1 (Conv1D)            (None, 96, 32)            6176      
    _________________________________________________________________
    max_pooling1d_1 (MaxPooling1 (None, 48, 32)            0         
    _________________________________________________________________
    flatten (Flatten)            (None, 1536)              0         
    _________________________________________________________________
    dense (Dense)                (None, 1)                 1537      
    =================================================================
    Total params: 80,017
    Trainable params: 80,017
    Non-trainable params: 0
    _________________________________________________________________
    import datetime
    baselogger = callbacks.BaseLogger(stateful_metrics=["auc"])
    logdir = "./data/keras_model/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
    history = model.fit(ds_train,validation_data = ds_test,
            epochs = 6,callbacks=[baselogger,tensorboard_callback])
     
    %matplotlib inline
    %config InlineBackend.figure_format = 'svg'
     
    import matplotlib.pyplot as plt
     
    def plot_metric(history, metric):
        train_metrics = history.history[metric]
        val_metrics = history.history['val_'+metric]
        epochs = range(1, len(train_metrics) + 1)
        plt.plot(epochs, train_metrics, 'bo--')
        plt.plot(epochs, val_metrics, 'ro-')
        plt.title('Training and validation '+ metric)
        plt.xlabel("Epochs")
        plt.ylabel(metric)
        plt.legend(["train_"+metric, 'val_'+metric])
        plt.show()
    plot_metric(history,"auc")

    这里不能成功运行。。。,错误如下:

    Epoch 1/6
       1000/Unknown - 17s 17ms/step - loss: 0.1133 - accuracy: 0.9588 - auc: 0.9918
    ---------------------------------------------------------------------------
    KeyError                                  Traceback (most recent call last)
    <ipython-input-17-8cd49fdfb6d8> in <module>()
          4 tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
          5 history = model.fit(ds_train,validation_data = ds_test,
    ----> 6         epochs = 6,callbacks=[baselogger,tensorboard_callback])
          7 """ 
          8 %matplotlib inline
    
    3 frames
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/callbacks.py in on_epoch_end(self, epoch, logs)
        795   def on_epoch_end(self, epoch, logs=None):
        796     if logs is not None:
    --> 797       for k in self.params['metrics']:
        798         if k in self.totals:
        799           # Make value available to next callbacks.
    
    KeyError: 'metrics'

    只好先换成这样的:

    import datetime
    logdir = "./data/keras_model/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
    history = model.fit(ds_train,validation_data = ds_test,epochs = 6,callbacks=[tensorboard_callback])

    然后是结果:

    Epoch 1/6
    1000/1000 [==============================] - 44s 44ms/step - loss: 0.0058 - accuracy: 0.9980 - auc: 0.9999 - val_loss: 1.5239 - val_accuracy: 0.8598 - val_auc: 0.8961
    Epoch 2/6
    1000/1000 [==============================] - 44s 44ms/step - loss: 0.0011 - accuracy: 0.9996 - auc: 1.0000 - val_loss: 1.7804 - val_accuracy: 0.8610 - val_auc: 0.8920
    Epoch 3/6
    1000/1000 [==============================] - 44s 44ms/step - loss: 0.0034 - accuracy: 0.9990 - auc: 0.9999 - val_loss: 1.8452 - val_accuracy: 0.8524 - val_auc: 0.8861
    Epoch 4/6
    1000/1000 [==============================] - 43s 43ms/step - loss: 0.0107 - accuracy: 0.9969 - auc: 0.9995 - val_loss: 1.6515 - val_accuracy: 0.8582 - val_auc: 0.8901
    Epoch 5/6
    1000/1000 [==============================] - 44s 44ms/step - loss: 0.0022 - accuracy: 0.9994 - auc: 1.0000 - val_loss: 1.7680 - val_accuracy: 0.8522 - val_auc: 0.8864
    Epoch 6/6
    1000/1000 [==============================] - 44s 44ms/step - loss: 0.0052 - accuracy: 0.9979 - auc: 0.9999 - val_loss: 1.7506 - val_accuracy: 0.8554 - val_auc: 0.8918

     

    二,函数式API创建任意结构模型

    tf.keras.backend.clear_session()
     
    inputs = layers.Input(shape=[MAX_LEN])
    x  = layers.Embedding(MAX_WORDS,7)(inputs)
     
    branch1 = layers.SeparableConv1D(64,3,activation="relu")(x)
    branch1 = layers.MaxPool1D(3)(branch1)
    branch1 = layers.SeparableConv1D(32,3,activation="relu")(branch1)
    branch1 = layers.GlobalMaxPool1D()(branch1)
     
    branch2 = layers.SeparableConv1D(64,5,activation="relu")(x)
    branch2 = layers.MaxPool1D(5)(branch2)
    branch2 = layers.SeparableConv1D(32,5,activation="relu")(branch2)
    branch2 = layers.GlobalMaxPool1D()(branch2)
     
    branch3 = layers.SeparableConv1D(64,7,activation="relu")(x)
    branch3 = layers.MaxPool1D(7)(branch3)
    branch3 = layers.SeparableConv1D(32,7,activation="relu")(branch3)
    branch3 = layers.GlobalMaxPool1D()(branch3)
     
    concat = layers.Concatenate()([branch1,branch2,branch3])
    outputs = layers.Dense(1,activation = "sigmoid")(concat)
     
    model = models.Model(inputs = inputs,outputs = outputs)
     
    model.compile(optimizer='Nadam',
                loss='binary_crossentropy',
                metrics=['accuracy',"AUC"])
     
    model.summary()
    Model: "model"
    __________________________________________________________________________________________________
    Layer (type)                    Output Shape         Param #     Connected to                     
    ==================================================================================================
    input_1 (InputLayer)            [(None, 200)]        0                                            
    __________________________________________________________________________________________________
    embedding (Embedding)           (None, 200, 7)       70000       input_1[0][0]                    
    __________________________________________________________________________________________________
    separable_conv1d (SeparableConv (None, 198, 64)      533         embedding[0][0]                  
    __________________________________________________________________________________________________
    separable_conv1d_2 (SeparableCo (None, 196, 64)      547         embedding[0][0]                  
    __________________________________________________________________________________________________
    separable_conv1d_4 (SeparableCo (None, 194, 64)      561         embedding[0][0]                  
    __________________________________________________________________________________________________
    max_pooling1d (MaxPooling1D)    (None, 66, 64)       0           separable_conv1d[0][0]           
    __________________________________________________________________________________________________
    max_pooling1d_1 (MaxPooling1D)  (None, 39, 64)       0           separable_conv1d_2[0][0]         
    __________________________________________________________________________________________________
    max_pooling1d_2 (MaxPooling1D)  (None, 27, 64)       0           separable_conv1d_4[0][0]         
    __________________________________________________________________________________________________
    separable_conv1d_1 (SeparableCo (None, 64, 32)       2272        max_pooling1d[0][0]              
    __________________________________________________________________________________________________
    separable_conv1d_3 (SeparableCo (None, 35, 32)       2400        max_pooling1d_1[0][0]            
    __________________________________________________________________________________________________
    separable_conv1d_5 (SeparableCo (None, 21, 32)       2528        max_pooling1d_2[0][0]            
    __________________________________________________________________________________________________
    global_max_pooling1d (GlobalMax (None, 32)           0           separable_conv1d_1[0][0]         
    __________________________________________________________________________________________________
    global_max_pooling1d_1 (GlobalM (None, 32)           0           separable_conv1d_3[0][0]         
    __________________________________________________________________________________________________
    global_max_pooling1d_2 (GlobalM (None, 32)           0           separable_conv1d_5[0][0]         
    __________________________________________________________________________________________________
    concatenate (Concatenate)       (None, 96)           0           global_max_pooling1d[0][0]       
                                                                     global_max_pooling1d_1[0][0]     
                                                                     global_max_pooling1d_2[0][0]     
    __________________________________________________________________________________________________
    dense (Dense)                   (None, 1)            97          concatenate[0][0]                
    ==================================================================================================
    Total params: 78,938
    Trainable params: 78,938
    Non-trainable params: 0
    __________________________________________________________________________________________________
    import datetime
    logdir = "./data/keras_model/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
    history = model.fit(ds_train,validation_data = ds_test,epochs = 6,callbacks=[tensorboard_callback])
    Epoch 1/6
    1000/1000 [==============================] - 28s 28ms/step - loss: 0.5210 - accuracy: 0.7120 - auc: 0.8098 - val_loss: 0.3512 - val_accuracy: 0.8482 - val_auc: 0.9254
    Epoch 2/6
    1000/1000 [==============================] - 27s 27ms/step - loss: 0.2842 - accuracy: 0.8805 - auc: 0.9510 - val_loss: 0.3302 - val_accuracy: 0.8588 - val_auc: 0.9384
    Epoch 3/6
    1000/1000 [==============================] - 27s 27ms/step - loss: 0.1931 - accuracy: 0.9265 - auc: 0.9772 - val_loss: 0.3955 - val_accuracy: 0.8512 - val_auc: 0.9336
    Epoch 4/6
    1000/1000 [==============================] - 27s 27ms/step - loss: 0.1203 - accuracy: 0.9594 - auc: 0.9906 - val_loss: 0.4669 - val_accuracy: 0.8494 - val_auc: 0.9273
    Epoch 5/6
    1000/1000 [==============================] - 27s 27ms/step - loss: 0.0664 - accuracy: 0.9798 - auc: 0.9965 - val_loss: 0.5963 - val_accuracy: 0.8476 - val_auc: 0.9158
    Epoch 6/6
    1000/1000 [==============================] - 27s 27ms/step - loss: 0.0305 - accuracy: 0.9934 - auc: 0.9987 - val_loss: 0.7246 - val_accuracy: 0.8440 - val_auc: 0.9063
    plot_metric(history,"auc")

    三,Model子类化创建自定义模型

    # 先自定义一个残差模块,为自定义Layer
     
    class ResBlock(layers.Layer):
        def __init__(self, kernel_size, **kwargs):
            super(ResBlock, self).__init__(**kwargs)
            self.kernel_size = kernel_size
     
        def build(self,input_shape):
            self.conv1 = layers.Conv1D(filters=64,kernel_size=self.kernel_size,
                                       activation = "relu",padding="same")
            self.conv2 = layers.Conv1D(filters=32,kernel_size=self.kernel_size,
                                       activation = "relu",padding="same")
            self.conv3 = layers.Conv1D(filters=input_shape[-1],
                                       kernel_size=self.kernel_size,activation = "relu",padding="same")
            self.maxpool = layers.MaxPool1D(2)
            super(ResBlock,self).build(input_shape) # 相当于设置self.built = True
     
        def call(self, inputs):
            x = self.conv1(inputs)
            x = self.conv2(x)
            x = self.conv3(x)
            x = layers.Add()([inputs,x])
            x = self.maxpool(x)
            return x
     
        #如果要让自定义的Layer通过Functional API 组合成模型时可以序列化,需要自定义get_config方法。
        def get_config(self):  
            config = super(ResBlock, self).get_config()
            config.update({'kernel_size': self.kernel_size})
            return config
    # 测试ResBlock
    resblock = ResBlock(kernel_size = 3)
    resblock.build(input_shape = (None,200,7))
    resblock.compute_output_shape(input_shape=(None,200,7))
    
    # 自定义模型,实际上也可以使用Sequential或者FunctionalAPI
     
    class ImdbModel(models.Model):
        def __init__(self):
            super(ImdbModel, self).__init__()
     
        def build(self,input_shape):
            self.embedding = layers.Embedding(MAX_WORDS,7)
            self.block1 = ResBlock(7)
            self.block2 = ResBlock(5)
            self.dense = layers.Dense(1,activation = "sigmoid")
            super(ImdbModel,self).build(input_shape)
     
        def call(self, x):
            x = self.embedding(x)
            x = self.block1(x)
            x = self.block2(x)
            x = layers.Flatten()(x)
            x = self.dense(x)
            return(x)
     
    tf.keras.backend.clear_session()
     
    model = ImdbModel()
    model.build(input_shape =(None,200))
    model.summary()
     
    model.compile(optimizer='Nadam',
                loss='binary_crossentropy',
                metrics=['accuracy',"AUC"])
     
     
    import datetime
     
    logdir = "./tflogs/keras_model/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
    history = model.fit(ds_train,validation_data = ds_test,
                        epochs = 6,callbacks=[tensorboard_callback])
     
    plot_metric(history,"auc")
    odel: "imdb_model"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    embedding (Embedding)        multiple                  70000     
    _________________________________________________________________
    res_block (ResBlock)         multiple                  19143     
    _________________________________________________________________
    res_block_1 (ResBlock)       multiple                  13703     
    _________________________________________________________________
    dense (Dense)                multiple                  351       
    =================================================================
    Total params: 103,197
    Trainable params: 103,197
    Non-trainable params: 0
    _________________________________________________________________
    Epoch 1/6
    1000/1000 [==============================] - 44s 44ms/step - loss: 0.5311 - accuracy: 0.6953 - auc: 0.7931 - val_loss: 0.3333 - val_accuracy: 0.8522 - val_auc: 0.9352
    Epoch 2/6
    1000/1000 [==============================] - 43s 43ms/step - loss: 0.2507 - accuracy: 0.8985 - auc: 0.9619 - val_loss: 0.3906 - val_accuracy: 0.8404 - val_auc: 0.9427
    Epoch 3/6
    1000/1000 [==============================] - 43s 43ms/step - loss: 0.1448 - accuracy: 0.9465 - auc: 0.9868 - val_loss: 0.3965 - val_accuracy: 0.8742 - val_auc: 0.9403
    Epoch 4/6
    1000/1000 [==============================] - 43s 43ms/step - loss: 0.0758 - accuracy: 0.9745 - auc: 0.9958 - val_loss: 0.5496 - val_accuracy: 0.8648 - val_auc: 0.9279
    Epoch 5/6
    1000/1000 [==============================] - 43s 43ms/step - loss: 0.0296 - accuracy: 0.9898 - auc: 0.9990 - val_loss: 0.8675 - val_accuracy: 0.8592 - val_auc: 0.9111
    Epoch 6/6
    1000/1000 [==============================] - 43s 43ms/step - loss: 0.0208 - accuracy: 0.9927 - auc: 0.9995 - val_loss: 0.9153 - val_accuracy: 0.8578 - val_auc: 0.9094

     

    参考:

    开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

    GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

  • 相关阅读:
    2021.01.28 Rating赛
    2021.01.23 Rating赛补题报告
    Codeforces Round #104 (Div.2)补题报告
    Codeforces Beta Round #73(Div2)补题报告
    11.28天梯赛补题报告
    11月22日天梯训练补题报告
    11.14补题报告
    CCNA笔记
    Centos上安装mysql配置并授权远程连接部署项目
    web容器(03):Nginx配置负载均衡
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12690353.html
Copyright © 2020-2023  润新知