下面的范例使用TensorFlow的中阶API实现线性回归模型。
TensorFlow的中阶API主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。
import tensorflow as tf from tensorflow.keras import layers,losses,metrics,optimizers # 打印时间分割线 @tf.function def printbar(): ts = tf.timestamp() today_ts = ts%(24*60*60) hour = tf.cast(today_ts//3600+8,tf.int32)%tf.constant(24) minite = tf.cast((today_ts%3600)//60,tf.int32) second = tf.cast(tf.floor(today_ts%60),tf.int32) def timeformat(m): if tf.strings.length(tf.strings.format("{}",m))==1: return(tf.strings.format("0{}",m)) else: return(tf.strings.format("{}",m)) timestring = tf.strings.join([timeformat(hour),timeformat(minite), timeformat(second)],separator = ":") tf.print("=========="*8,end = "") tf.print(timestring) # 样本数量 n = 800 # 生成测试用数据集 X = tf.random.uniform([n,2],minval=-10,maxval=10) w0 = tf.constant([[2.0],[-1.0]]) b0 = tf.constant(3.0) Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0) # @表示矩阵乘法,增加正态扰动 # 构建输入数据管道 ds = tf.data.Dataset.from_tensor_slices((X,Y)) .shuffle(buffer_size = 1000).batch(100) .prefetch(tf.data.experimental.AUTOTUNE) # 定义优化器 optimizer = optimizers.SGD(learning_rate=0.001) linear = layers.Dense(units = 1) linear.build(input_shape = (2,)) @tf.function def train(epoches): for epoch in tf.range(1,epoches+1): L = tf.constant(0.0) #使用L记录loss值 for X_batch,Y_batch in ds: with tf.GradientTape() as tape: Y_hat = linear(X_batch) loss = losses.mean_squared_error(tf.reshape(Y_hat,[-1]),tf.reshape(Y_batch,[-1])) grads = tape.gradient(loss,linear.variables) optimizer.apply_gradients(zip(grads,linear.variables)) L = loss if(epoch%100==0): printbar() tf.print("epoch =",epoch,"loss =",L) tf.print("w =",linear.kernel) tf.print("b =",linear.bias) tf.print("") train(500)
结果:
InternalError: 2 root error(s) found. (0) Internal: No unary variant device copy function found for direction: 1 and Variant type_index: tensorflow::data::(anonymous namespace)::DatasetVariantWrapper [[{{node while_input_5/_12}}]] [[Func/while/body/_1/cond/then/_78/StatefulPartitionedCall/cond/then/_105/input/_133/_96]] (1) Internal: No unary variant device copy function found for direction: 1 and Variant type_index: tensorflow::data::(anonymous namespace)::DatasetVariantWrapper [[{{node while_input_5/_12}}]] 0 successful operations. 0 derived errors ignored. [Op:__inference_train_302016] Function call stack: train -> train
这里出现了一个问题,我是在谷歌colab上使用gpu进行运行的,会报这个错误,但当我切换成cpu运行时就不报错了:
================================================================================15:34:47 epoch = 100 loss = 4.7718153 w = [[2.00853848] [-1.00294471]] b = [2.51343322] ================================================================================15:34:49 epoch = 200 loss = 3.71054626 w = [[2.01135874] [-1.00254476]] b = [3.019526] ================================================================================15:34:51 epoch = 300 loss = 3.84821081 w = [[2.01109028] [-1.00210166]] b = [3.12148571] ================================================================================15:34:53 epoch = 400 loss = 3.35442448 w = [[2.01156759] [-1.0024389]] b = [3.14201045] ================================================================================15:34:55 epoch = 500 loss = 3.98874116 w = [[2.00852275] [-1.00062764]] b = [3.14614844]
参考:
开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/
GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days