• 记录一些论文


    行人重识别:

    1、Bag of Tricks and A Strong Baseline for Deep Person Re-identification

    地址:http://103.95.217.77/openaccess.thecvf.com/content_CVPRW_2019/papers/TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_Deep_Person_CVPRW_2019_paper.pdf

    描述:显而易见,在行人重识别中的一些小技巧

    2、Adaptive deep metric embeddings for person re-identification under occlusions(Neurocomputing)

    地址:https://www.researchgate.net/publication/331323968_Adaptive_Deep_Metric_Embeddings_for_Person_Re-Identification_under_Occlusions

    描述:利用LSTM提取局部信息,并结合全局信息、提出triplet loss的改进版本ANN loss。

    3、Diversity-Achieving Slow-DropBlock Network for Person Re-Identification

    地址:http://103.95.217.75/xxx.itp.ac.cn/pdf/2002.04414.pdf

    描述:一个是slow-dropblock,另一个就是注意力机制和支路的使用、GAP提取全局信息,GMP提取局部信息。

    图神经网络

    1、A Comprehensive Survey on Graph Neural Networks

    地址:https://arxiv.org/abs/1901.00596?context=cs

    描述:图神经网络综述。

    细粒度图像分类

    1、The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification

    描述:提出了一种多通道损失

    GAP,CCMP,和CWA分别是全局平均池化(global average pooling),跨通道最大池化(cross-channel max pooling)和通道维度的注意力机制(channel-wise attention)的简写 

    数据增强

    1、GradAug: A New Regularization Method for Deep Neural Networks

    地址:http://xxx.itp.ac.cn/pdf/2006.07989.pdf 

    小目标检测

    1、HRDNet: High-resolution Detection Network for Small Objects

    地址:http://xxx.itp.ac.cn/pdf/2006.07607.pdf

    自然语言处理 

    1、On Layer Normalization in the Transformer Architecture

    地址:https://arxiv.org/pdf/2002.04745v1.pdf

    行人检测

    1、YOLOPEDS: EFFICIENT REAL-TIME SINGLE-SHOT PEDESTRIAN DETECTION FOR SMART CAMERA APPLICATIONS

    地址:https://arxiv.org/pdf/2007.13404.pdf

  • 相关阅读:
    vue中处理ie兼容性问题
    vue使用websocket
    vue-cli中使用sass的坑
    really_probe()
    ro.boot.bootreason property设置(androidboot.xxxx bootargs)
    kernel exception vector table
    compile/link misc
    user space syscall/library API misc
    LIUNX SHELL中-a 到-z的解释
    getenforce/setenforce
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12251309.html
Copyright © 2020-2023  润新知