题意:求一个N个点无向图中,其中p个关键点间的最短距离.
分析:比较特殊的最短路,方式类似于多源BFS,将所有关键点装入优先队列,状态中需要包含其源点的id.对每条边都要遍历,对每个节点,需要记录其确定最短的源头以及其最短距离.当一个访问状态到达了与自己源头状态不同的点,则说明两个关键点相遇,每次相遇时,更新两个源头的最短距离.
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 2e5+5;
const LL INF = (1LL)<<60;
struct Edge{
int v,next;
LL w;
}E[MAXN<<2];
int head[MAXN],tot;
int vis[MAXN];
LL d[MAXN],link[MAXN];
vector<int> st;
int N,M,k;
void init()
{
st.clear();
memset(head,-1,sizeof(head));
tot = 0;
}
void AddEdge(int u,int v,int w){
E[tot] = (Edge){v,head[u],w};
head[u] = tot++;
}
struct HeapNode{
int u,sta;
LL val;
bool operator < (const HeapNode & rhs) const{
return val > rhs.val;
}
};
void Dijkstra()
{
for(int i=0;i<=N;++i) d[i] = INF, vis[i] = 0;
priority_queue<HeapNode> Q;
for(int i=0,sz = st.size();i<sz;++i){
int u = st[i];
d[u] = 0;
link[u] = INF;
Q.push((HeapNode){u,u,0});
}
while(!Q.empty()){
HeapNode x = Q.top(); Q.pop();
int u = x.u, sta = x.sta;
if(vis[u] == 0){
vis[u] = sta;
d[u] = x.val;
for(int i=head[u]; ~i; i = E[i].next){
int v = E[i].v;
Q.push((HeapNode){v,sta,d[u]+E[i].w});
}
}
else if(vis[u] != sta){
int fu = vis[u];
link[sta] = min(link[sta], x.val + d[u]);
link[fu] = min(link[fu], x.val+ d[u]);
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
scanf("%d %d %d",&N, &M, &k);
init();
int u,v;
LL w;
while(k--){
scanf("%d",&u);
st.push_back(u);
}
while(M--){
scanf("%d %d %lld",&u,&v,&w);
AddEdge(u,v,w);
AddEdge(v,u,w);
}
Dijkstra();
for(int i=0,sz = st.size();i<sz;++i){
printf("%lld%c",link[st[i]], i==sz-1?'
':' ');
}
return 0;
}