• HDU


    题意:对于给定的物品,求两个在高度上单调不递增,权值上单调不递减的序列,使二者长度之和最大。
    分析:可以用费用流求解,因为要求长度和最大,视作从源点出发的流量为2的费用流,建负权边,每个物品只能取一次,且花费为-1。将每个物品拆成入点和出点,中间建容量为1,费用为-1的弧。建源点s和超级源点S,S到s建容量为2,费用为0的弧,表示只有两个序列。源点s向每个入点建容量为1,费用为0的弧,表示每个点都可作为序列的首项。出点向汇点建容量为1,费用为0的弧,表示每个点都可作为序列的末项。
    对给定物品按高度和权值排序后,从权值较小的物品向权值较大的物品建边,容量为1,花费为0。
    跑出费用流后对花费取反就是答案。spfa要用栈优化,队列会T。

    #include<iostream>
    #include<cstring>
    #include<stdio.h>
    #include<algorithm>
    #include<string>
    #include<cmath>
    #include<set>
    #include<map>
    #include<vector>
    #include<stack>
    #include<queue>
    using namespace std;
    const int MAXN = 2005;
    const int MAXM = 2000005;
    const int INF = 0x3f3f3f3f;
    struct Edge{
        int to, next, cap, flow, cost;
    } edge[MAXM];
    int head[MAXN], tot;
    int pre[MAXN], dis[MAXN];
    bool vis[MAXN];
    int N;
    void init(int n)
    {
        N = n;
        tot = 0;
        memset(head, -1, sizeof(head));
    }
    
    void AddEdge(int u, int v, int cap, int cost)
    {
        edge[tot] = (Edge){v,head[u],cap,0,cost};
        head[u] = tot++;
        edge[tot] = (Edge){u,head[v],0,0,-cost};
        head[v] = tot++;
    }
    
    bool spfa(int s, int t){
        stack<int> q;
        for (int i = 0; i < N; i++){
            dis[i] = INF;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while (!q.empty()){
            int u = q.top();
            q.pop();
            vis[u] = false;
            for (int i = head[u]; i != -1; i = edge[i].next){
                int v = edge[i].to;
    
                if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost){
                    dis[v] = dis[u] + edge[i].cost;
                    pre[v] = i;
                    if (!vis[v]){
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if (pre[t] == -1) return false;
        else  return true;
    }
    
    int minCostMaxflow(int s, int t, int &cost){
        int flow = 0;
        cost = 0;
        while (spfa(s, t)){
            int Min = INF;
            for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
                if (Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            }
            for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to]){
                edge[i].flow += Min;
                edge[i ^ 1].flow -= Min;
                cost += edge[i].cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    
    struct Node{
        int h,w;
        bool operator<(const Node &rhs) const{
            if(h==rhs.h) return w<rhs.w;
            return h>rhs.h;
        }
    }vz[MAXN];
    
    int main()
    {
        #ifndef ONLINE_JUDGE
            freopen("in.txt","r",stdin);
            freopen("out.txt","w",stdout);
        #endif
        int T; scanf("%d",&T);
        while(T--){
            int N; scanf("%d",&N);
            int u,v;
            for(int i=1;i<=N;++i){
                scanf("%d %d",&vz[i].h,&vz[i].w);
            }
            sort(vz+1,vz+N+1);
            init(2*N+4);
            int s = 2*N+1, t = 2*N+2;
            int S = 0;
            for(int i=1;i<=N;++i){
                AddEdge(i+N,t,1,0);
                AddEdge(s,i,1,0);
                AddEdge(i,i+N,1,-1);
                int x = INF;
                for(int j=i+1;j<=N;++j){
                    if(vz[i].w<=vz[j].w){
                        AddEdge(i+N,j,1,0);
                    }
                }
            }
            AddEdge(S,s,2,0);
            int cost;
            minCostMaxflow(S,t,cost);
            printf("%d
    ",-cost);
        }
        return 0;
    }
    
    为了更好的明天
  • 相关阅读:
    yaf(3) 正则路由
    yaf(1) 配置文件
    PHP 分页URL设计
    smarty模版目录疑问
    yaf(5) smarty
    yaf(2) layout 自定义目录结构
    php 倒计时出现0的情况
    PHP 单一入口框架设计简析
    利用jquery.load()实现html框架效果
    yaf(4) Yaf_Loader()
  • 原文地址:https://www.cnblogs.com/xiuwenli/p/9692778.html
Copyright © 2020-2023  润新知