• Spark程序排错


    1.shuffle相关

    报错提示

    org.apache.spark.shuffle.MetadataFetchFailedException: 
    Missing an output location for shuffle 0
    org.apache.spark.shuffle.FetchFailedException:
    Failed to connect to hostname/192.168.xx.xxx:50268

    java.lang.AssertionError: assertion failed
    at scala.Predef$.assert(Predef.scala:165)
    at org.apache.spark.memory.UnifiedMemoryManager.acquireExecutionMemory(UnifiedMemoryManager.scala:80)   

    原理分析

    shuffle分为shuffle writeshuffle read两部分。
    shuffle write的分区数由上一阶段的RDD分区数控制,shuffle read的分区数则是由Spark提供的一些参数控制。

    shuffle write可以简单理解为类似于saveAsLocalDiskFile的操作,将计算的中间结果按某种规则临时放到各个executor所在的本地磁盘上。

    shuffle read的时候数据的分区数则是由spark提供的一些参数控制。可以想到的是,如果这个参数值设置的很小,同时shuffle read的量很大,那么将会导致一个task需要处理的数据非常大。结果导致JVM crash,从而导致取shuffle数据失败,同时executor也丢失了,看到Failed to connect to host的错误,也就是executor lost的意思。有时候即使不会导致JVM crash也会造成长时间的gc。

    解决办法

    知道原因后问题就好解决了,主要从shuffle的数据量和处理shuffle数据的分区数两个角度入手。

    1. 减少shuffle数据

      思考是否可以使用map side join或是broadcast join来规避shuffle的产生。

      将不必要的数据在shuffle前进行过滤,比如原始数据有20个字段,只要选取需要的字段进行处理即可,将会减少一定的shuffle数据。

    2. SparkSQL和DataFrame的join,group by等操作

      通过spark.sql.shuffle.partitions控制分区数,默认为200,根据shuffle的量以及计算的复杂度提高这个值。

    3. Rdd的join,groupBy,reduceByKey等操作

      通过spark.default.parallelism控制shuffle read与reduce处理的分区数,默认为运行任务的core的总数(mesos细粒度模式为8个,local模式为本地的core总数),官方建议为设置成运行任务的core的2-3倍。

    4. 提高executor的内存

      通过spark.executor.memory适当提高executor的memory值。

    5. 是否存在数据倾斜的问题

      空值是否已经过滤?异常数据(某个key数据特别大)是否可以单独处理?考虑改变数据分区规则。

    参考

    http://blog.csdn.net/lsshlsw/article/details/51213610

  • 相关阅读:
    省市区三级联动
    jeDate日期控件
    Juery返回Json数据格式,webForm中使用
    JS补充
    winfrom中上传文件保存在webFrom里面
    游标
    函数
    触发器
    Leetcode练习(Python):数组类:第106题:根据一棵树的中序遍历与后序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。
    Leetcode练习(Python):数组类:第105题:根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。
  • 原文地址:https://www.cnblogs.com/xiongmaotailang/p/5952659.html
Copyright © 2020-2023  润新知