• 红黑树的代码实现


    红黑树满足一下规则

    1. 每个节点不是红色就是黑色

    2.根节点为黑色

    3.如果节点为红,其子节点必须为黑

    4.任一节点至nil的任何路径,所包含的黑节点数必须相同。

    5.叶子节点nil为黑色

    当破坏了平衡时,在调整的时候需要用到左旋和右旋

    左旋:

    右旋:

    代码实现:

     1 void rb_tree::__rb_tree_rotate_left(link_type x) {
     2     link_type y = x->right;
     3     x->right = y->left;
     4     if(y->left != nil) {
     5         y->left->parent = x;
     6     }
     7     y->parent = x->parent;
     8     if(x == root) {
     9         root = y;
    10     } else if(x == x->parent->left) {
    11         x->parent->left = y;
    12     } else {
    13         x->parent->right = y;
    14     }
    15     x->parent = y;
    16     y->left = x;
    17 }
    左旋转
     1 void rb_tree::__rb_tree_rotate_right(link_type x) {
     2     link_type y = x->left;
     3     x->left = y->right;
     4     if(x->left != nil) {
     5         x->left->parent = x;
     6     }
     7     y->parent = x->parent;
     8     if(x == root) {
     9         root = y;
    10     } else if(x->parent->left == x) {
    11         x->parent->left = y;
    12     } else {
    13         x->parent->right = y;
    14     }
    15 
    16     x->parent = y;
    17     y->right = x;
    18 }
    右旋转

    插入节点时,可能会破坏红黑树的结构,如下图,在插入3,8,35,75的时候,就破坏了树的结构:

    设定如下用语:新节点为X,其父节点为P,组父节点为G,伯父节点为S,曾祖父节点GG。

    根据红黑树规则4,X必为红,若P也为红(这就违反了规则3,必须调整树形),则G必为黑。于是,根据X的插入位置及外围节点的颜色,有了以下三种考虑。

    情况1:S为黑且X为外侧插入。

    对此情况,我们先对P,G做一次单旋转,并更改P,G的颜色,即可重新满足红黑树的规则3。

    情况2:S为黑且X为内侧插入。

    对此情况,我们必须先对P,X做一次单旋转并更改G,X颜色,再将结果对G做一次单旋转,即可重新满足红黑树规则3.

    情况3:S为红,不考虑X是否内外测。

    对此情况,我们需将P和S设置为黑色,G设置为红色,并将X设置成G继续判断即可。

    以下为插入和调整代码

     1 void rb_tree::insert(key_type __x) {
     2     link_type new_node;
     3     link_type new_parent = nil;
     4     link_type pos = root;
     5     while (pos != nil) {
     6         new_parent = pos;
     7         if(__x < pos->key) {
     8             pos = pos->left;
     9         } else if(__x > pos->key) {
    10             pos = pos->right;
    11         } else {
    12             fprintf(stderr, "Error: node %d already in the tree.
    ", __x);
    13             exit(1);
    14         }
    15     }
    16     new_node = get_node(__x);
    17     new_node->parent = new_parent;
    18     if(new_parent == nil) {
    19         root = new_node;
    20     } else if(__x < new_parent->key) {
    21         new_parent->left = new_node;
    22     } else {
    23         new_parent->right = new_node;
    24     }
    25     __rb_tree_rebalance(new_node);
    26     ++ node_count;
    27 }
    插入
     1 void rb_tree::__rb_tree_rebalance(link_type x) {
     2     while (x != root && x->parent->color == __rb_tree_red) {
     3         if(x->parent == x->parent->parent->left) {
     4             link_type s = x->parent->parent->right;
     5             if(s && s->color == __rb_tree_red) {
     6                 x->parent->color = __rb_tree_black;
     7                 s->color = __rb_tree_black;
     8                 x->parent->parent->color = __rb_tree_red;
     9                 x = x->parent->parent;
    10             } else {
    11                 if(x == x->parent->right) {
    12                     x = x->parent;
    13                     __rb_tree_rotate_left(x);
    14                 }
    15                 x->parent->color = __rb_tree_black;
    16                 x->parent->parent->color = __rb_tree_red;
    17                 __rb_tree_rotate_right(x->parent->parent);
    18             }
    19         } else {
    20             link_type s = x->parent->parent->left;
    21             if(s && s->color == __rb_tree_red) {
    22                 s->color = __rb_tree_black;
    23                 x->parent->color = __rb_tree_black;
    24                 x->parent->parent->color = __rb_tree_red;
    25                 x = x->parent->parent;
    26             } else {
    27                 if(x == x->parent->left) {
    28                     x = x->parent;
    29                     __rb_tree_rotate_right(x);
    30                 }
    31                 x->parent->color = __rb_tree_black;
    32                 x->parent->parent->color = __rb_tree_red;
    33                 __rb_tree_rotate_left(x->parent->parent);
    34             }
    35         }
    36     }
    37     root->color = __rb_tree_black;
    38 }
    调整结构

    删除节点的操作和二叉搜索树的原理一样,只是加了旋转和着色。

     1.当删除节点没有子节点树直接删除,用nil代替当前位置,

     2.当删除节点只有一个子树时,用子节点代替当前位置,

     3.当删除节点有两个字数时,找到它的后继节点,将它们继续更换,那么就变成了删除后继节点,而且后继节点至多有一个字数,这就转换成前两种情况了。

    假设删除节点为y,子节点为x。

    如果y是红色的,那就不会破坏结构。

    如果y是黑色的,x是红色的,那么将x变为黑色就OK了

    如果y是黑色的,x是黑色且是根,不会破坏结构。

    否则的话就有下面四种情况:

    情况1:X为黑色,S为红色。

    如果X是P的左孩子,将S设置为黑色,X设置为红色,对P进行左旋装,重新设置S

    如果X是P的右孩子,将S设置为黑色,X设置为红色,对P进行右旋转,重新设置S

    情况2:X为黑色,S为黑色,并且S的两个孩子都为黑色。

    将S设置为红色,设置X为P。

    情况3:X为黑色,S为黑色。

    如果X是P的左孩子,S的左孩子为红色,右孩子为黑色。

    将S的左孩子设置为黑色,S设置为红色,对S进行右旋转,重新设置S。

    如果X是P的右孩子,S的右孩子为红色,左孩子为黑色。

    将S的右孩子设置为黑色,S设置为红色,对S进行左旋转,重新设置S。

    情况4:X为黑色,S为黑色。

    如果X是P的左孩子,S的右孩子为红色,左孩子任意。

    将P的颜色赋值给S,设置P的颜色为黑色,S的右孩子为黑色,对P进行左旋转,设置X为root

    如果X是P的右孩子,S的左孩子为红色,右孩子任意。

    将P的颜色赋值给S,设置P的颜色为黑色,S的左孩子为红色,对P进行右旋转,设置X为root

    其实X是P的左孩子或者右孩子,它们的操作都是对应的。

    以下是删除代码和删除后调整的代码

     1 rb_tree::link_type rb_tree::erase(key_type __x) {
     2     link_type dead = find(__x);
     3     if(dead == nil) {
     4         fprintf(stderr, "Error,node %d does not exist
    ", __x);
     5         return nil;
     6     }
     7     link_type x = nil, y = nil;
     8     if(dead->left == nil || dead->right == nil) {
     9         y = dead;
    10     } else {
    11         y = __get_next_node(dead);
    12     }
    13     if(y->left == nil) {
    14         x = y->right;
    15     }else if(y->right == nil) {
    16         x = y->left;
    17     }
    18 //    if(x) {
    19         x->parent = y->parent;
    20 //    }
    21     if(y->parent == nil) {
    22         root = x;
    23     } else if(y == y->parent->left) {
    24         y->parent->left = x;
    25     } else if(y == y->parent->right) {
    26         y->parent->right = x;
    27     }
    28 
    29     if(dead != y) {
    30         dead->key = y->key;
    31     }
    32     if(y->color == __rb_tree_black) {
    33         __rb_tree_delete_fixup(x);
    34     }
    35     return y;
    36 }
    删除
     1 void rb_tree::__rb_tree_delete_fixup(link_type x) {
     2 //    printf("nil:%d
    ", x==nil);
     3     while (x != root && x->color == __rb_tree_black) {
     4         if(x == x->parent->left) {
     5             link_type s = x->parent->right;
     6             if(s->color == __rb_tree_red) {
     7                 s->color = __rb_tree_black;
     8                 x->parent->color = __rb_tree_red;
     9                 __rb_tree_rotate_left(x->parent);
    10                 s = x->parent->right;
    11             }
    12 
    13             if(s->left->color == __rb_tree_black && s->right->color == __rb_tree_black) {
    14                 s->color = __rb_tree_red;
    15                 x = x->parent;
    16             } else {
    17                 if(s->right->color == __rb_tree_black) {
    18                     s->left->color = __rb_tree_black;
    19                     s->color = __rb_tree_red;
    20                     __rb_tree_rotate_right(s);
    21                     s = x->parent->right;
    22                 }
    23 
    24                 s->color = x->parent->color;
    25                 x->parent->color = __rb_tree_black;
    26                 s->right->color = __rb_tree_black;
    27                 __rb_tree_rotate_left(x->parent);
    28                 x = root;
    29             }
    30         } else {
    31             link_type s = x->parent->left;
    32             if(s->color == __rb_tree_red) {
    33                 s->color = __rb_tree_black;
    34                 x->parent->color = __rb_tree_red;
    35                 __rb_tree_rotate_right(x->parent);
    36                 s = x->parent->left;
    37             }
    38 
    39             if(s->left->color == __rb_tree_black && s->right->color == __rb_tree_black) {
    40                 s->color = __rb_tree_red;
    41                 x = x->parent;
    42             } else {
    43                 if(s->left->color == __rb_tree_black) {
    44                     s->right->color = __rb_tree_black;
    45                     s->color = __rb_tree_red;
    46                     __rb_tree_rotate_left(s);
    47                     s = x->parent->left;
    48                 }
    49 
    50                 s->color = x->parent->color;
    51                 x->parent->color = __rb_tree_black;
    52                 s->left->color = __rb_tree_black;
    53                 __rb_tree_rotate_right(x->parent);
    54                 x = root;
    55             }
    56         }
    57     }
    58     x->color = __rb_tree_black;
    59 }
    调整代码

    以下是两个完整的代码,只需 #include "rb_tree.h"即可使用。

     1 //
     2 // Created by starry on 2019/8/24.
     3 //
     4 
     5 #ifndef TREE_PTR_H
     6 #define TREE_PTR_H
     7 
     8 #include <stdio.h>
     9 //#define nil NULL
    10 
    11 typedef bool __rb_tree_color_type;
    12 const __rb_tree_color_type __rb_tree_red = false;
    13 const __rb_tree_color_type __rb_tree_black = true;
    14 
    15 struct __rb_tree_node{
    16     typedef __rb_tree_color_type color_type;
    17     typedef __rb_tree_node* rb_node_ptr;
    18     typedef int key_type;
    19 
    20     key_type key;
    21     color_type color;
    22     rb_node_ptr parent;
    23     rb_node_ptr left, right;
    24 };
    25 
    26 class rb_tree{
    27 public:
    28     typedef __rb_tree_node rb_tree_node;
    29     typedef __rb_tree_color_type color_type;
    30 
    31     typedef rb_tree_node* link_type;
    32     typedef size_t size_type;
    33     typedef void* void_pointer;
    34     typedef int key_type;
    35 
    36 public:
    37     rb_tree();
    38 
    39     bool empty() const { return node_count == 0;}
    40     size_type size() const { return node_count;}
    41 
    42     void clear();
    43     void insert(key_type __x);
    44     link_type erase(key_type __x);
    45     link_type find(key_type __x);
    46     void draw();
    47     int rb_height(link_type x);
    48 
    49 private:
    50 
    51     link_type get_node(key_type __x);
    52     void __rb_tree_rebalance(link_type x);
    53     void __rb_tree_rotate_left(link_type x);
    54     void __rb_tree_rotate_right(link_type x);
    55     void __rb_tree_delete_fixup(link_type x);
    56     void __serialize(link_type x);
    57     void __delete(link_type x);
    58     link_type __get_next_node(link_type x);
    59 
    60     size_type node_count;
    61     link_type root;
    62     link_type nil;
    63 };
    64 
    65 
    66 #endif //TREE_PTR_H
    rb_tree.h
      1 //
      2 // Created by starry on 2019/8/24.
      3 //
      4 
      5 #include "rb_tree.h"
      6 #include <stdlib.h>
      7 #include <stdio.h>
      8 
      9 void rb_tree::draw() {
     10     __serialize(root);
     11     printf("
    ");
     12 }
     13 
     14 int rb_tree::rb_height(link_type x) {
     15     if(x == nil)
     16         return 0;
     17     int l = rb_height(x->left);
     18     int r = rb_height(x->right);
     19     return 1 + (l>r?l:r);
     20 }
     21 
     22 rb_tree::rb_tree() {
     23     nil = (link_type)malloc(sizeof(rb_tree_node));
     24     nil->left = nil->right = nil->parent = nil;
     25     nil->color = __rb_tree_black;
     26     root = nil;
     27     node_count = 0;
     28 }
     29 
     30 void rb_tree::clear() {
     31     __delete(root);
     32     root = nil;
     33     node_count = 0;
     34 }
     35 
     36 void rb_tree::__delete(link_type x) {
     37     if(x == nil) return;
     38     __delete(x->left);
     39     __delete(x->right);
     40     free(x);
     41 }
     42 
     43 rb_tree::link_type rb_tree::find(key_type __x) {
     44     link_type pos = root;
     45     while (pos != nil) {
     46         if(pos->key == __x) return pos;
     47         else if(pos->key > __x) pos = pos->left;
     48         else if(pos->key < __x) pos = pos->right;
     49     }
     50     return pos;
     51 }
     52 
     53 void rb_tree::insert(key_type __x) {
     54     link_type new_node;
     55     link_type new_parent = nil;
     56     link_type pos = root;
     57     while (pos != nil) {
     58         new_parent = pos;
     59         if(__x < pos->key) {
     60             pos = pos->left;
     61         } else if(__x > pos->key) {
     62             pos = pos->right;
     63         } else {
     64             fprintf(stderr, "Error: node %d already in the tree.
    ", __x);
     65             exit(1);
     66         }
     67     }
     68     new_node = get_node(__x);
     69     new_node->parent = new_parent;
     70     if(new_parent == nil) {
     71         root = new_node;
     72     } else if(__x < new_parent->key) {
     73         new_parent->left = new_node;
     74     } else {
     75         new_parent->right = new_node;
     76     }
     77     __rb_tree_rebalance(new_node);
     78     ++ node_count;
     79 }
     80 
     81 rb_tree::link_type rb_tree::erase(key_type __x) {
     82     link_type dead = find(__x);
     83     if(dead == nil) {
     84         fprintf(stderr, "Error,node %d does not exist
    ", __x);
     85         return nil;
     86     }
     87     link_type x = nil, y = nil;
     88     if(dead->left == nil || dead->right == nil) {
     89         y = dead;
     90     } else {
     91         y = __get_next_node(dead);
     92     }
     93     if(y->left == nil) {
     94         x = y->right;
     95     }else if(y->right == nil) {
     96         x = y->left;
     97     }
     98 //    if(x) {
     99     x->parent = y->parent;
    100 //    }
    101     if(y->parent == nil) {
    102         root = x;
    103     } else if(y == y->parent->left) {
    104         y->parent->left = x;
    105     } else if(y == y->parent->right) {
    106         y->parent->right = x;
    107     }
    108 
    109     if(dead != y) {
    110         dead->key = y->key;
    111     }
    112     if(y->color == __rb_tree_black) {
    113         __rb_tree_delete_fixup(x);
    114     }
    115     return y;
    116 }
    117 
    118 void rb_tree::__rb_tree_delete_fixup(link_type x) {
    119     while (x != root && x->color == __rb_tree_black) {
    120         if(x == x->parent->left) {
    121             link_type s = x->parent->right;
    122             if(s->color == __rb_tree_red) {
    123                 s->color = __rb_tree_black;
    124                 x->parent->color = __rb_tree_red;
    125                 __rb_tree_rotate_left(x->parent);
    126                 s = x->parent->right;
    127             }
    128 
    129             if(s->left->color == __rb_tree_black && s->right->color == __rb_tree_black) {
    130                 s->color = __rb_tree_red;
    131                 x = x->parent;
    132             } else {
    133                 if(s->right->color == __rb_tree_black) {
    134                     s->left->color = __rb_tree_black;
    135                     s->color = __rb_tree_red;
    136                     __rb_tree_rotate_right(s);
    137                     s = x->parent->right;
    138                 }
    139 
    140                 s->color = x->parent->color;
    141                 x->parent->color = __rb_tree_black;
    142                 s->right->color = __rb_tree_black;
    143                 __rb_tree_rotate_left(x->parent);
    144                 x = root;
    145             }
    146         } else {
    147             link_type s = x->parent->left;
    148             if(s->color == __rb_tree_red) {
    149                 s->color = __rb_tree_black;
    150                 x->parent->color = __rb_tree_red;
    151                 __rb_tree_rotate_right(x->parent);
    152                 s = x->parent->left;
    153             }
    154 
    155             if(s->left->color == __rb_tree_black && s->right->color == __rb_tree_black) {
    156                 s->color = __rb_tree_red;
    157                 x = x->parent;
    158             } else {
    159                 if(s->left->color == __rb_tree_black) {
    160                     s->right->color = __rb_tree_black;
    161                     s->color = __rb_tree_red;
    162                     __rb_tree_rotate_left(s);
    163                     s = x->parent->left;
    164                 }
    165 
    166                 s->color = x->parent->color;
    167                 x->parent->color = __rb_tree_black;
    168                 s->left->color = __rb_tree_black;
    169                 __rb_tree_rotate_right(x->parent);
    170                 x = root;
    171             }
    172         }
    173     }
    174     x->color = __rb_tree_black;
    175 }
    176 
    177 rb_tree::link_type rb_tree::__get_next_node(link_type x) {
    178     if(x == nil) return nil;
    179     link_type next = nil;
    180     if(x->right != nil) {
    181         x = x->right;
    182         while(x->left != nil) x = x->left;
    183         next = x;
    184     } else {
    185         link_type y = x->parent;
    186         while (y && x == y->right) {
    187             x = y;
    188             y = y->parent;
    189         }
    190         next = y;
    191     }
    192     return next;
    193 }
    194 
    195 void rb_tree::__serialize(link_type x) {
    196     if(x == nil) {
    197         printf("#$");
    198         return;
    199     }
    200     printf("(%d,%d)",x->key,x->color);
    201     __serialize(x->left);
    202     __serialize(x->right);
    203 }
    204 
    205 rb_tree::link_type rb_tree::get_node(key_type __x) {
    206     link_type ret;
    207     if((ret = (link_type)malloc(sizeof(rb_tree_node))) == NULL) {
    208         fprintf(stderr, "Error: out of memory.
    ");
    209         exit(1);
    210     }
    211     ret->left = nil;
    212     ret->right = nil;
    213     ret->parent = nil;
    214     ret->color = __rb_tree_red;
    215     ret->key = __x;
    216     return ret;
    217 }
    218 
    219 void rb_tree::__rb_tree_rebalance(link_type x) {
    220     while (x != root && x->parent->color == __rb_tree_red) {
    221         if(x->parent == x->parent->parent->left) {
    222             link_type s = x->parent->parent->right;
    223             if(s && s->color == __rb_tree_red) {
    224                 x->parent->color = __rb_tree_black;
    225                 s->color = __rb_tree_black;
    226                 x->parent->parent->color = __rb_tree_red;
    227                 x = x->parent->parent;
    228             } else {
    229                 if(x == x->parent->right) {
    230                     x = x->parent;
    231                     __rb_tree_rotate_left(x);
    232                 }
    233                 x->parent->color = __rb_tree_black;
    234                 x->parent->parent->color = __rb_tree_red;
    235                 __rb_tree_rotate_right(x->parent->parent);
    236             }
    237         } else {
    238             link_type s = x->parent->parent->left;
    239             if(s && s->color == __rb_tree_red) {
    240                 s->color = __rb_tree_black;
    241                 x->parent->color = __rb_tree_black;
    242                 x->parent->parent->color = __rb_tree_red;
    243                 x = x->parent->parent;
    244             } else {
    245                 if(x == x->parent->left) {
    246                     x = x->parent;
    247                     __rb_tree_rotate_right(x);
    248                 }
    249                 x->parent->color = __rb_tree_black;
    250                 x->parent->parent->color = __rb_tree_red;
    251                 __rb_tree_rotate_left(x->parent->parent);
    252             }
    253         }
    254     }
    255     root->color = __rb_tree_black;
    256 }
    257 
    258 void rb_tree::__rb_tree_rotate_left(link_type x) {
    259     link_type y = x->right;
    260     x->right = y->left;
    261     if(y->left != nil) {
    262         y->left->parent = x;
    263     }
    264     y->parent = x->parent;
    265     if(x == root) {
    266         root = y;
    267     } else if(x == x->parent->left) {
    268         x->parent->left = y;
    269     } else {
    270         x->parent->right = y;
    271     }
    272     x->parent = y;
    273     y->left = x;
    274 }
    275 
    276 void rb_tree::__rb_tree_rotate_right(link_type x) {
    277     link_type y = x->left;
    278     x->left = y->right;
    279     if(x->left != nil) {
    280         x->left->parent = x;
    281     }
    282     y->parent = x->parent;
    283     if(x == root) {
    284         root = y;
    285     } else if(x->parent->left == x) {
    286         x->parent->left = y;
    287     } else {
    288         x->parent->right = y;
    289     }
    290 
    291     x->parent = y;
    292     y->right = x;
    293 }
    rb_tree.cpp
  • 相关阅读:
    python操作MySQL数据库(转)
    python3.3.2中的关键字(转)
    HashMap的键值需要注意什么?
    为什么基本类型不能做为HashMap的键值?
    怎么确保一个集合不能被修改?
    Iterator和 ListIterator有什么区别?
    Iterator怎么使用?有什么特点?
    迭代器Iterator是什么?
    哪些集合类是线程安全的?
    Queue的element()和peek()方法有什么区别?
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/11411144.html
Copyright © 2020-2023  润新知