• 413. 数组切片 Arithmetic Slices


    A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

    For example, these are arithmetic sequence:

    1, 3, 5, 7, 9
    7, 7, 7, 7
    3, -1, -5, -9

    The following sequence is not arithmetic.

    1, 1, 2, 5, 7

    A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

    A slice (P, Q) of array A is called arithmetic if the sequence:
    A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

    The function should return the number of arithmetic slices in the array A.


    Example:

    A = [1, 2, 3, 4]
    
    return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.
    


    这道题让我们算一种算数切片,说白了就是找等差数列,限定了等差数列的长度至少为3,那么[1,2,3,4]含有3个长度至少为3的算数切片,我们再来看[1,2,3,4,5]有多少个呢:
    len = 3: [1,2,3], [2,3,4], [3,4,5]
    len = 4: [1,2,3,4], [2,3,4,5]
    len = 5: [1,2,3,4,5]
    那么我们可以找出递推式,长度为n的等差数列中含有长度至少为3的算数切片的个数为(n-1)(n-2)/2,那么题目就变成了找原数组中等差数列的长度,然后带入公式去算个数即可

    1. class Solution {
    2. public:
    3. int numberOfArithmeticSlices(vector<int>& A) {
    4. int res = 0, len = 2, n = A.size();
    5. for (int i = 2; i < n; ++i) {
    6. if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
    7. ++len;
    8. } else {
    9. if (len > 2) res += (len - 1) * (len - 2) * 0.5;
    10. len = 2;
    11. }
    12. }
    13. if (len > 2) res += (len - 1) * (len - 2) * 0.5;
    14. return res;
    15. }
    16. };


    1. public int NumberOfArithmeticSlices(int[] A)
    2. {
    3. int n = A.Length;
    4. if (n < 3) return 0;
    5. int[] dp = new int[n];
    6. int result = 0;
    7. for (int i = 2; i < n; ++i) {
    8. if (A[i] - A[i - 1] == A[i - 1] - A[i - 2])
    9. {
    10. dp[i] = dp[i - 1] + 1;
    11. }
    12. result += dp[i];
    13. }
    14. return result;
    15. }





  • 相关阅读:
    如何在Odoo创建新数据的时候添加自己的方法
    如何在odoo中实现隐藏原有菜单meum(3行代码实现)
    博客皮肤
    通过备份 Etcd 来完美恢复 Kubernetes 中的误删数据
    修改kubernetes-dashboard默认token认证时间
    Docker就该这么学--第一个dockerfile镜像文件
    nginx优化之网络服务模型
    nginx优化之nginx的进程与线程
    php的加载方式和设计模式
    nginx优化之nginx的配置文件详解
  • 原文地址:https://www.cnblogs.com/xiejunzhao/p/958894eeef161a8acdf54652bdf3fc43.html
Copyright © 2020-2023  润新知