Given two strings representing two complex numbers.
You need to return a string representing their multiplication. Note i2 = -1 according to the definition.
Example 1:
Input: "1+1i", "1+1i" Output: "0+2i" Explanation: (1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i, and you need convert it to the form of 0+2i.
Example 2:
Input: "1+-1i", "1+-1i" Output: "0+-2i" Explanation: (1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i, and you need convert it to the form of 0+-2i.
Note:
- The input strings will not have extra blank.
- The input strings will be given in the form of a+bi, where the integer a and b will both belong to the range of [-100, 100]. And the output should be also in this form.
# 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数
# 那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
class Solution(object):
def complexNumberMultiply(self, a, b):
import re
pattern = re.compile("-*d+")
numA = int(pattern.findall(a)[0])
numB = int(pattern.findall(a)[1])
numC = int(pattern.findall(b)[0])
numD = int(pattern.findall(b)[1])
real = numA * numC - numB * numD
imaginary = numB * numC + numA * numD
return str(real) + "+" + str(imaginary) + "i"