描述
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
(Figure 1)
Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.
- 输入
- Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
- 输出
- Your program is to write to standard output. The highest sum is written as an integer.
- 样例输入
-
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
- 样例输出
-
30
解题思路:
在解本题的时候,我习惯性的想到利用最长递增子序列等问题的求解方式,即要求i到j行的距离A[i,j],需要求到A[i,j-1]即i到j-1行的路径最长,但是通过这种思路,并不能够
找到一个对应的等式。后来通过借鉴别人的思路,可以求出到达每个点的最长路径,再求出其最长路径,再由某点i,j,能够到达该点的上一行一定是F[i-1,j-1]或者F[i-1,j]。比较其大值加上该点的长度即可。
设某点的路径数值为M[i,j]
F[i,j]=Max(F[i-1,j-1],F[i-1,j])+M[i,j]
1 public static int BiggestSum(int[,] M, int len) 2 { 3 int[,] F = new int[len+1, len+1]; 4 int biggest = 0; 5 for (int i = 0; i <= len; i++) 6 for (int j = 0; j <= len; j++) 7 F[i, j] = 0; 8 for (int i = 1; i <= len; i++) 9 for (int j = 1; j <= i; j++) 10 { 11 F[i, j] = Math.Max(F[i - 1, j - 1], F[i - 1, j]) + M[i, j]; 12 if (F[i, j] > biggest) 13 biggest = F[i, j]; 14 } 15 return biggest; 16 }