一、服务器端的处理模式
1.迭代服务器
服务器只有处理完了当前用户的请求后,才会处理下一请求,因此是
迭代式的,在同一线程内处理。
ServerSocket serverSocket = new ServerSocket(port);
while(true) {
Socket clientSocket = serverSocket.accept();
...
}
2.一客户一线程
对每个连接的客户端都新建一个线程来处理它的请求。这种处理方式
的缺点很明显,当创建出来的同时运行的线程过多时,操作系统大量
时间都耗费在线程的切换和状态维护上,而非线程内的请求处理。
ServerSocket serverSocket = new ServerSocket(port);
while(true) {
Socket clientSocket = serverSocket.accept();
new HandlerThread(clientSocket).start();
...
}
3.线程池
使用固定数目的线程来监听请求,或者使用JDK的Executor线程池。相比
前面两种方法,这种处理方式在并发与性能之间达到了一个平衡,但是
它也是有自身的缺点,具体见后文的描述。
final ServerSocket serverSocket = new ServerSocket(port);
for (int i = 0; i < poolSize; i++) {
new Thread() {
public void run() {
while (true) {
Socket clientSocket = serverSocket.accept();
...
}
}
}.start();
}
4.缺点
类似上述这些基于阻塞式Socket和多线程的处理方式都有很大的缺点:
1.线程池的大小限制了系统可以同时服务的客户端总数。
2.如果想要保证某些连接优先获得服务,线程就很难做到。
3.如果这些线程需要读写共享的资源的话,还需要锁或其他互斥机制来同步。
二、NIO中的Select机制
通过NIO,我们可以很方便地在Java中实现Select机制。Select机制比上述的
处理方式好在哪呢?
首先,在Select机制中,我们不需要许多的线程来应对无数客户端的请求。我们
通过一次select()调用可以得到一组客户端,而这些客户端都是准备好读写的,
因此在后续的读写操作都是非阻塞的。所以这一组准备就绪的客户端读写请求就
都交给一个Selector类来处理了,完全的单线程,没有了上面的那些缺点!
此外,定长的Buffer缓冲类替代了流的概念,所以NIO里没有了输入输出流的身影,
而是将数据保存到Buffer对象中后,直接写入到Channel中。读取时,也是直接从
Channel中读取出Buffer。
public class TCPNonblockingClientTest { public static void main(String[] args) throws Exception { SocketChannel channel = SocketChannel.open(); channel.configureBlocking(false); if (!channel.connect(new InetSocketAddress("localhost", 1234))) { while (!channel.finishConnect()) System.out.print("."); System.out.println(); } String message = "helloselector"; ByteBuffer writeBuf = ByteBuffer.wrap(message.getBytes()); ByteBuffer readBuf = ByteBuffer.allocate(message.length()); int totalBytesRcvd = 0; int bytesRcvd; while (totalBytesRcvd < message.length()) { if (writeBuf.hasRemaining()) channel.write(writeBuf); if ((bytesRcvd = channel.read(readBuf)) == -1) throw new SocketException("Connection closed"); totalBytesRcvd += bytesRcvd; System.out.print("."); } System.out.println("Received: " + new String(readBuf.array(), 0, totalBytesRcvd)); channel.close(); } }
public class TCPSelectorServerTest { public static void main(String[] args) throws Exception { Selector selector = Selector.open(); int[] ports = { 1234, 5678 }; for (int port : ports) { ServerSocketChannel listenChannel = ServerSocketChannel.open(); listenChannel.socket().bind(new InetSocketAddress("localhost", port)); listenChannel.configureBlocking(false); listenChannel.register(selector, SelectionKey.OP_ACCEPT); } while (true) { if (selector.select(3000) == 0) { System.out.print("."); continue; } Iterator<SelectionKey> keyIter = selector.selectedKeys().iterator(); while (keyIter.hasNext()) { SelectionKey key = keyIter.next(); if (key.isAcceptable()) { SocketChannel clientChannel = ((ServerSocketChannel) key.channel()).accept(); clientChannel.configureBlocking(false); clientChannel.register(key.selector(), SelectionKey.OP_READ, ByteBuffer.allocate(32)); } if (key.isReadable()) { SocketChannel clientChannel = (SocketChannel) key.channel(); ByteBuffer buffer = (ByteBuffer) key.attachment(); long bytesRead = clientChannel.read(buffer); if (bytesRead == -1) clientChannel.close(); else key.interestOps(SelectionKey.OP_READ | SelectionKey.OP_WRITE); } if (key.isValid() && key.isWritable()) { ByteBuffer buffer = (ByteBuffer) key.attachment(); buffer.flip(); SocketChannel clientChannel = (SocketChannel) key.channel(); clientChannel.write(buffer); // No left, no longer interest in write if (!buffer.hasRemaining()) key.interestOps(SelectionKey.OP_READ); buffer.compact(); } keyIter.remove(); } } } }