• [BZOJ3670][UOJ#5][NOI2014]动物园


    [BZOJ3670][UOJ#5][NOI2014]动物园

    试题描述

    近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。

    某天,园长给动物们讲解KMP算法。

    园长:“对于一个字符串S,它的长度为L。我们可以在O(L)的时间内,求出一个名为next的数组。有谁预习了next数组的含义吗?”

    熊猫:“对于字符串S的前i个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作next[i]。”

    园长:“非常好!那你能举个例子吗?”

    熊猫:“例S为abcababc,则next[5]=2。因为S的前5个字符为abcabab既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出next[1] = next[2] = next[3] = 0,next[4] = next[6] = 1,next[7] = 2,next[8] = 3。”

    园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在O(L)的时间内求出next数组。

    下课前,园长提出了一个问题:“KMP算法只能求出next数组。我现在希望求出一个更强大num数组一一对于字符串S的前i个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作num[i]。例如Saaaaa,则num[4] = 2。这是因为S的前4个字符为aaaa,其中aaa都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而aaa虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理,num[1] = 0,num[2] = num[3] = 1,num[5] = 2。”

    最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出num数组呢?

    特别地,为了避免大量的输出,你不需要输出num[i]分别是多少,你只需要输出对1,000,000,007取模的结果即可。

    输入

    第1行仅包含一个正整数n ,表示测试数据的组数。随后n行,每行描述一组测试数据。每组测试数据仅含有一个字符串S,S的定义详见题目描述。数据保证S 中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。

    输出

    包含 n 行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对 1,000,000,007 取模的结果。输出文件中不应包含多余的空行。

    输入示例1

    3
    aaaaa
    ab
    abcababc

    输出示例1

    36
    1
    32

    输入示例2

    传送门(点击下载)

    输出示例2

    传送门

    数据规模及约定

    n5,L1000000

    题解

    此题后缀数组的解法不难想到,因为找的num[i]都只考虑前缀,所以把每一个后缀和整个串匹配一下,做一下区间增加就行了。至于不能重叠的要求稍微讨论一下。

    80分:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <vector>
    #include <queue>
    #include <cstring>
    #include <string>
    #include <map>
    #include <set>
    using namespace std;
    
    const int BufferSize = 1 << 16;
    char buffer[BufferSize], *Head, *tail;
    inline char Getchar() {
        if(Head == tail) {
            int l = fread(buffer, 1, BufferSize, stdin);
            tail = (Head = buffer) + l;
        }
        return *Head++;
    }
    int read() {
        int x = 0, f = 1; char c = Getchar();
        while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
        while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
        return x * f;
    }
    
    #define maxn 1000010
    #define maxlog 21
    #define MOD 1000000007
    #define LL long long
    int n, m, rank[maxn], height[maxn], Ws[maxn], sa[maxn];
    char S[maxn];
    
    bool cmp(int* a, int p1, int p2, int len) { return a[p1] == a[p2] && a[p1+len] == a[p2+len]; }
    void ssort() {
    	int *x = rank, *y = height;
    	m = 0; memset(Ws, 0, sizeof(Ws));
    	for(int i = 1; i <= n; i++) S[i] -= ('a' - 1), Ws[x[i] = S[i]]++, m = max(m, (int)S[i]);
    	for(int i = 1; i <= m; i++) Ws[i] += Ws[i-1];
    	for(int i = n; i; i--) sa[Ws[x[i]]--] = i;
    	for(int pos = 0, j = 1; pos < n; j <<= 1, m = pos) {
    		pos = 0;
    		for(int i = n - j + 1; i <= n; i++) y[++pos] = i;
    		for(int i = 1; i <= n; i++) if(sa[i] > j) y[++pos] = sa[i] - j;
    		for(int i = 1; i <= m; i++) Ws[i] = 0;
    		for(int i = 1; i <= n; i++) Ws[x[i]]++;
    		for(int i = 1; i <= m; i++) Ws[i] += Ws[i-1];
    		for(int i = n; i; i--) sa[Ws[x[y[i]]]--] = y[i];
    		swap(x, y); pos = 1; x[sa[1]] = 1;
    		for(int i = 2; i <= n; i++) x[sa[i]] = cmp(y, sa[i], sa[i-1], j) ? pos : ++pos;
    	}
    	return ;
    }
    void calch() {
    	for(int i = 1; i <= n; i++) rank[sa[i]] = i;
    	for(int i = 1, j, k = 0; i <= n; height[rank[i++]] = k)
    		for(k ? k-- : 0, j = sa[rank[i]-1]; S[i+k] == S[j+k]; k++) ;
    	return ;
    }
    
    int minv[maxlog][maxn], Log[maxn];
    void init() {
    	Log[1] = 0;
    	for(int i = 2; i <= n; i++) Log[i] = Log[i>>1] + 1;
    	for(int i = 1; i <= n; i++) minv[0][i] = height[i];
    	for(int j = 1; (1 << j) <= n; j++)
    		for(int i = 1; i + (1 << j) - 1 <= n; i++)
    			minv[j][i] = min(minv[j-1][i], minv[j-1][i+(1<<j-1)]);
    	return ;
    }
    int query(int ql, int qr) {
    	ql++;
    	int len = qr - ql + 1, t = Log[len];
    	return min(minv[t][ql], minv[t][qr-(1<<t)+1]);
    }
    
    int addv[maxn];
    int main() {
    	int T = read();
    	while(T--) {
    		n = 0; memset(S, 0, sizeof(S));
    		char tc = Getchar();
    		while(!isalpha(tc)) tc = Getchar();
    		while(isalpha(tc)) S[++n] = tc, tc = Getchar();
    		ssort();
    		calch();
    		init(); memset(addv, 0, sizeof(addv));
    		for(int i = 2; i <= n; i++) {
    			int tmp = query(min(rank[1], rank[i]), max(rank[1], rank[i]));
    			tmp = min(tmp, i - 1);
    //			printf("%d ", tmp);
    			addv[i]++; addv[i+tmp]--;
    		}
    //		putchar('
    ');
    		LL ans = 1; int t = 0;
    		for(int i = 1; i <= n; i++) t += addv[i], (ans *= (1ll + t)) %= MOD;
    		printf("%lld
    ", ans);
    	}
    	
    	return 0;
    }
    

    此题正解是KMP,同时维护两个指针j, j2,分别表示上一次失配的位置和最后一次在位置小于等于(i >> 1)失配的位置,再维护num[i]数组表示i往前失配会经过多少条失配边。

    100分:

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <vector>
    #include <queue>
    #include <cstdlib>
    using namespace std;
    
    int read() {
    	int x = 0, f = 1; char c = getchar();
    	while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    	while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    	return x * f;
    }
    
    #define maxn 1000010
    #define MOD 1000000007
    #define LL long long
    int n, f[maxn];
    LL num[maxn];
    char S[maxn];
    
    int main() {
    	int T = read();
    	while(T--) {
    		scanf("%s", S+1);
    		n = strlen(S+1);
    		f[1] = f[2] = 1; num[1] = 0;
    		int j = 1, j2 = 1;
    		LL ans = 1;
    		for(int i = 2; i <= n; i++) {
    			while(j > 1 && S[i] != S[j]) j = f[j];
    			f[i+1] = j += (S[i] == S[j]);
    			num[i] = num[f[i]] + 1;
    			while(j2 > 1 && S[i] != S[j2]) j2 = f[j2];
    			j2 += (S[i] == S[j2]);
    			while(j2 > 1 && (j2-1 << 1) > i) j2 = f[j2];
    			(ans *= (1ll + num[j2])) %= MOD;
    		}
    		printf("%lld
    ", ans);
    	}
    	
    	return 0;
    }
    
  • 相关阅读:
    高放的c++学习笔记之函数基础
    高放的c++学习笔记之关联容器
    高放的c++学习笔记之lambda表达式
    二分图小结
    送给大一学弟学妹的几句话
    网络流小结
    后缀数组小结
    hdu5353
    UVALive 5792 Diccionário Portuñol
    概率dp小结
  • 原文地址:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/5405350.html
Copyright © 2020-2023  润新知