• Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第7节: 获取异线程释放的对象


     

    Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler

     

    第七节: 获取异线程释放的对象

     

    上一小节分析了异线程回收对象, 原理是通过与stack关联的WeakOrderQueue进行回收

    如果对象经过异线程回收之后, 当前线程需要取出对象进行二次利用, 如果当前stack中为空, 则会通过当前stack关联的WeakOrderQueue进行取出, 这也是这一小写要分析的, 获取异线程释放的对象

    在介绍之前我们首先看Stack类中的两个属性:

    private WeakOrderQueue cursor, prev;
    private volatile WeakOrderQueue head;

    这里都是指向WeakOrderQueue的指针, 其中head我们上一小节分析过, 指向最近创建的和stack关联WeakOrderQueue, 也就是头结点

    cursor代表的是寻找的当前WeakOrderQueue, pre则是cursor上一个节点, 如图所示:

    8-7-1

    我们从获取对象的入口方法, handle的get开始分析:

    public final T get() {
        if (maxCapacityPerThread == 0) {
            return newObject((Handle<T>) NOOP_HANDLE);
        }
        Stack<T> stack = threadLocal.get();
        DefaultHandle<T> handle = stack.pop();
        if (handle == null) {
            handle = stack.newHandle();
            handle.value = newObject(handle);
        }
        return (T) handle.value;
    }

    这块逻辑我们并不陌上, stack对象通过pop弹出一个handle

    我们跟到pop方法中:

    DefaultHandle<T> pop() {
        int size = this.size;
        if (size == 0) {
            if (!scavenge()) {
                return null;
            }
            size = this.size;
        }
        size --;
        DefaultHandle ret = elements[size];
        elements[size] = null;
        if (ret.lastRecycledId != ret.recycleId) {
            throw new IllegalStateException("recycled multiple times");
        }
        ret.recycleId = 0;
        ret.lastRecycledId = 0;
        this.size = size;
        return ret;
    }

    这里我们重点关注, 如果size为空, 也就是当前tack为空的情况下, 会走到scavenge方法, 这个方法, 就是从WeakOrderQueue获取对象的方法

    跟进scavenge方法:

    boolean scavenge() {
        if (scavengeSome()) {
            return true;
        }
        prev = null;
        cursor = head;
        return false;
    }

    scavengeSome方法表示已经回收到了对象, 则直接返回, 如果没有回收到对象, 则将prev和cursor两个指针进行重置

    继续跟到scavengeSome方法中:

    boolean scavengeSome() {
        WeakOrderQueue cursor = this.cursor;
        if (cursor == null) {
            cursor = head;
            if (cursor == null) {
                return false;
            }
        }
        boolean success = false;
        WeakOrderQueue prev = this.prev;
        do {
            if (cursor.transfer(this)) {
                success = true;
                break;
            }
            WeakOrderQueue next = cursor.next;
            if (cursor.owner.get() == null) {
                if (cursor.hasFinalData()) {
                    for (;;) {
                        if (cursor.transfer(this)) {
                            success = true;
                        } else {
                            break;
                        }
                    }
                }
                if (prev != null) {
                    prev.next = next;
                }
            } else {
                prev = cursor;
            }
            cursor = next;
        } while (cursor != null && !success);
        this.prev = prev;
        this.cursor = cursor;
        return success;
    }

    首先拿到cursor指针, cursor指针代表要回收的WeakOrderQueue

    如果cursor为空, 则让其指向头节点, 如果头节点也空, 说明当前stack没有与其关联的WeakOrderQueue, 则返回false

    通过一个布尔值success标记回收状态

    然后拿到pre指针, 也就是cursor的上一个节点, 之后进入一个do-while循环

    do-while循环的终止条件是, 如果没有遍历到最后一个节点并且回收的状态为false, 这里我们可以分析到再循环体里, 是不管遍历与stack关联的WeakOrderQueue, 直到弹出对象为止

    跟到do-while循环中:

    首先cursor指针会调用transfer方法, 该方法表示从当前指针指向的WeakOrderQueue中将元素放入到当前stack中, 如果取出成功则将success设置为true并跳出循环, transfer我们稍后分析, 我们继续往下看

    如果没有获得元素, 则会通过next属性拿到下一个WeakOrderQueue, 然后会进入一个判断 if (cursor.owner.get() == null) 

    owner属性我们上一小节提到过, 就是与当前WeakOrderQueue关联的一个线程, get方法就是获得关联的线程对象, 如果这个对象为null说明该线程不存在, 则进入if块, 也就是一些清理的工作

    if块中又进入一个判断 if (cursor.hasFinalData()) , 这里表示当前的WeakOrderQueue中是否还有数据, 如果有数据则通过for循环将数据通过transfer方法传输到当前stack中, 传输成功的, 将success标记为true

    transfer方法是将WeakOrderQueue中一个link中的handle往stack进行传输, 有关link的相关内容, 我们上一小节也进行过分析

    所以这里通过for循环将每个link的中的数据传输到stack中

    继续往下看, 如果pre节点不为空, 则通过 prev.next = next 将cursor节点进行释放, 也就是pre的下一个节点指向cursor的下一个节点

    继续往下看else块中的 prev = cursor 

    这里表示如果当前线程还在, 则将prev赋值为cursor, 代表prev后移一个节点

    最后通过cursor = next将cursor后移一位, 然后再继续进行循环

    循环结束之后, 将stack的prev和cursor属性进行保存

     

    我们跟到transfer方法中, 分析如何将WeakOrderQueue中的handle传输到stack中:

    boolean transfer(Stack<?> dst) {
        Link head = this.head;
        if (head == null) {
            return false;
        }
        if (head.readIndex == LINK_CAPACITY) {
            if (head.next == null) {
                return false;
            }
            this.head = head = head.next;
        }
        final int srcStart = head.readIndex;
        int srcEnd = head.get();
        final int srcSize = srcEnd - srcStart;
        if (srcSize == 0) {
            return false;
        }
        final int dstSize = dst.size;
        final int expectedCapacity = dstSize + srcSize;
        if (expectedCapacity > dst.elements.length) {
            final int actualCapacity = dst.increaseCapacity(expectedCapacity);
            srcEnd = min(srcStart + actualCapacity - dstSize, srcEnd);
        }
        if (srcStart != srcEnd) {
            final DefaultHandle[] srcElems = head.elements;
            final DefaultHandle[] dstElems = dst.elements;
            int newDstSize = dstSize;
            for (int i = srcStart; i < srcEnd; i++) {
                DefaultHandle element = srcElems[i];
                if (element.recycleId == 0) {
                    element.recycleId = element.lastRecycledId;
                } else if (element.recycleId != element.lastRecycledId) {
                    throw new IllegalStateException("recycled already");
                }
                srcElems[i] = null;
                if (dst.dropHandle(element)) {
                    continue;
                }
                element.stack = dst;
                dstElems[newDstSize ++] = element;
            }
            if (srcEnd == LINK_CAPACITY && head.next != null) {
                reclaimSpace(LINK_CAPACITY);
                this.head = head.next;
            }
            head.readIndex = srcEnd;
            if (dst.size == newDstSize) {
                return false;
            }
            dst.size = newDstSize;
            return true;
        } else {
            return false;
        }
    }

    剖析之前这里我们回顾WeakOrderQueue的数据结构, 如图所示:

    8-7-2

    我们上一小节分析过, WeakOrderQueue是由多个link组成, 每个link通过链表的方式进行关联, 其中head属性指向第一个link, tail属性指向最后一个link

    在每个link中有多个handle

    在link中维护了一个读指针readIndex, 标记着读取link中handle的位置

     

    我们继续分析transfer方法:

    首先获取头结点, 并判断头结点是否为空, 如果头结点为空, 说明当前WeakOrderQueue并没有link, 返回false

     if (head.readIndex == LINK_CAPACITY) 这里判断读指针是否为16, 因为link中元素最大数量就是16, 如果读指针为16, 说明当前link中的数据都被取走了

    接着判断 head.next == null , 表示是否还有下一个link, 如果没有下一个link, 则说明当前WeakOrderQueue没有元素了, 则返回false

    如果当前head的next节点不为null, 则将当前head节点指向下一个节点, 将原来的head节点进行释放, 移动关系如图所示:

    8-7-3

    继续往下看, 拿到head节点的读指针和head中元素的数量, 接着计算可以传输元素的大小, 如果大小为0, 则返回false

    8-7-4

    接着, 拿到当前stack的大小, 当前stack大小加上可以传输的大小表示stack中所需要的容量

     if (expectedCapacity > dst.elements.length) 表示如果需要的容量大于当前stack中所维护的数组的大小, 则将stack中维护的数组进行扩容, 进入if块中

    扩容之后会返回actualCapacity, 表示扩容之后的大小

    再看 srcEnd = min(srcStart + actualCapacity - dstSize, srcEnd) 这步

    srcEnd表示可以从Link中取的最后一个元素的下标

     srcStart + actualCapacity - dstSize 这里我们进行一个拆分, actualCapacity - dstSize表示扩容后大大小-原stack的大小, 也就是最多能往stack中传输多少元素

    读指针+可以往stack传输的数量, 可以表示往stack中传输的最后一个下标, 这里的下标和srcEnd中取一个较小的值, 也就是既不能超过stack的容量, 也不能造成当前link中下标越界

     

    继续往下看

     int newDstSize = dstSize 表示初始化stack的下标, 表示stack中从这个下标开始添加数据

    然后判断 srcStart != srcEnd , 表示能不能同link中获取内容, 如果不能, 则返回false, 如果可以, 则进入if块中

    接着拿到当前link的数组elements和stack中的数组elements

    然后通过for循环, 通过数组下标的方式不断的将当前link中的数据放入到stack中

    for循环中首先拿到link的第i个元素

    接着我们我们关注一个细节:

    if (element.recycleId == 0) {
        element.recycleId = element.lastRecycledId;
    } else if (element.recycleId != element.lastRecycledId) {
        throw new IllegalStateException("recycled already");
    }

    这里 element.recycleId == 0 表示对象没有被回收过, 如果没有被回收过, 则赋值为lastRecycledId, 我们前面分析过lastRecycledId是WeakOrderQueue中的唯一下标, 通过赋值标记element被回收过

    然后继续判断 element.recycleId != element.lastRecycledId , 这表示该对象被回收过, 但是回收的recycleId却不是最后一次回收lastRecycledId, 这是一种异常情况, 表示一个对象在不同的地方被回收过两次, 这种情况则抛出异常

    接着将link的第i个元素设置为null

    继续往下看:

    if (dst.dropHandle(element)) {
        continue;
    }

    这里表示控制回收站回收的频率, 之前的小节我们分析过, 这里不再赘述

     element.stack = dst 表示将handle的stack属性设置到当前stack

     dstElems[newDstSize ++] = element 这里通过数组的下标的方式将link中的handle赋值到stack的数组中

     

    继续往下看:

    if (srcEnd == LINK_CAPACITY && head.next != null) {
        reclaimSpace(LINK_CAPACITY);
        this.head = head.next;
    }

    这里的if表循环结束后, 如果link中的数据已经回收完毕, 并且还有下一个节点则会进到reclaimSpace方法

    我们跟到reclaimSpace方法:

    private void reclaimSpace(int space) {
        assert space >= 0;
        availableSharedCapacity.addAndGet(space);
    }

    这里将availableSharedCapacity加上16, 表示WeakOrderQueue还可以继续插入link

    继续看transfer方法:

     this.head = head.next 表示将head节点后移一个元素

     head.readIndex = srcEnd 表示将读指针指向srcEnd, 下一次读取可以从srcEnd开始

     if (dst.size == newDstSize) 表示没有向stack传输任何对象, 则返回false

    否则就通过 dst.size = newDstSize 更新stack的大小为newDstSize, 并返回true

    以上就是从link中往stack中传输数据的过程

     

    第八章总结

            这一章主要讲解了两个性能优化工具了FastThreadLocal和Recycler

            FastThreadLocal和jdk的ThreadLocal功能类似, 只是性能更快, 通过FastTreadLocalThread中的threadLocalMap对象, 通过数组下标的方式进行保存和获取对象

            Recycler是一个轻量级的对象回收站, 用于对象重用, 避免了对象的频繁创建和减轻gc的压力

            Recycler同线程回收对象是通过一个线程共享的stack实现的, 将对象包装成handle并存入stack中

            Reclyer异线程回收对象是将handle存入一个与stack关联的WeakOrderQueue中, 同一个stack中关联的不同WeakOrderQueue由不同的线程创建

            从Recycler获取对象时stack中有值, 则可以直接从stack中获取

            如果stack中没有值则通过stack关联的WeakOrderQueue中获取

     

    上一节: 异线程回收对象

  • 相关阅读:
    servlet的配置
    getRequestDispatcher()与sendRedirect()的区别
    request.setAttribute()怎么用的?
    <jsp:useBean>元素使用全解
    jsp中使用javabean简单例子
    2-1
    跟我想的一样,已经连续暴跌三天了。
    我的判断很正确
    我靠算个账发现最近打德扑输了好多钱啊,怀疑PokerStars里是不是有好多机器人作弊骗钱呢???
    1-18
  • 原文地址:https://www.cnblogs.com/xiangnan6122/p/10209540.html
Copyright © 2020-2023  润新知