• [NOI2016][洛谷P1117]优秀的拆分(SA)


    题面

    https://www.luogu.com.cn/problem/P1117

    题解

    前置知识:

    本题要求一个字符串中所有AABB形式的字符串(可重)的个数。

    首先考虑简化要求:设f[x]表示以第x位为结尾,有多少个AA形式的字符串;g[x]表示以第x位为开头有多少个AA形式的字符串。答案显然是(sum f[i]g[i+1])

    枚举AA型字符串的半长len,然后设置第1位,第len+1位,第2len+1位…为特殊点。一个长度为2len的AA型字符串一定通过恰好两个相邻的特殊点。不妨设这两个点是i,j。

    A在特殊点左边的部分长l(包括特殊点本身),那么显然有(1{leq}l{leq}len)。另外,i,j还必须满足(lcs(pre_i,pre_j){geq}l)以及(lcp(suf_i,suf_j){geq}len-l+1)

    所以通过两个相邻特殊点i、j,并且特殊点左边的部分长为l的、半长为len的AA型字符串存在的必要条件是:

    [egin{cases} l{geq}max(1,len+1-lcp(suf_i,suf_j)) \ l{leq}min(len,lcs(pre_i,pre_j)) end{cases} ]

    不难发现这也是充分条件。

    所以枚举了len,i,j之后,设(high=min(len,lcs(pre_i,pre_j)),low=max(1,len+1-lcp(suf_i,suf_j))),如果(high{leq}low),就把i-high+1到i-low+1的g值全部++,把j+len-high到j+len-low的f值全部++。这个可以维护差分而做到(O(1))的更新。

    前缀的最长公共后缀、后缀的最长公共前缀都可以通过预处理前(后)缀数组+height数组上ST表做到O(1)。

    所以总时间复杂度是调和级数(O(sum_{i=1}^{n}{frac{n}{i}})=O(n log n))

    代码

    #include<bits/stdc++.h>
    
    using namespace std;
    
    #define rg register
    #define In inline
    #define ll long long
    
    const int N = 30000;
    
    In int read(){
    	int s = 0,ww = 1;
    	char ch = getchar();
    	while(ch < '0' || ch > '9'){if(ch == '-')ww = -1;ch = getchar();}
    	while('0' <= ch && ch <= '9'){s = 10 * s + ch - '0';ch = getchar();}
    	return s * ww;
    }
    
    int n;
    char s[N+5];
    ll f[N+5],g[N+5];
    int lg[N+5];
    
    struct ST{
    	int minn[N+5][16];
    	void prepro(int a[]){
    		for(rg int i = 1;i <= n;i++)minn[i][0] = a[i];
    		for(rg int j = 1;j <= 15;j++)
    			for(rg int i = 1;i + (1<<j) - 1 <= n;i++)minn[i][j] = min(minn[i][j-1],minn[i+(1<<(j-1))][j-1]);
    	}
    	int query(int l,int r){
    		int d = lg[r-l+1];
    		return min(minn[l][d],minn[r+1-(1<<d)][d]);
    	}
    };
    
    struct SA{
    	int sa[N+5],rk[N+5],temp[N+5],num[N+5],h[N+5];
    	int m;	
    	void clear(){
    		memset(sa,0,sizeof(int)*(n+2));
    		memset(rk,0,sizeof(int)*(n+2));
    		memset(temp,0,sizeof(int)*(n+2));
    	}
    	void qsort(){
    		memset(num,0,sizeof(int) * (m+1));
    		for(rg int i = 1;i <= n;i++)num[rk[i]]++;
    		for(rg int i = 2;i <= m;i++)num[i] += num[i-1];
    		for(rg int i = n;i >= 1;i--)sa[num[rk[temp[i]]]--] = temp[i];
    	}
    	ST H;
    	void calch(){
    		int k = 0;
    		for(rg int i = 1;i <= n;i++){
    			if(rk[i] == 1)h[1] = k = 0;
    			else{
    				if(k)k--;
    				int j = sa[rk[i]-1];
    				while(s[i+k] == s[j+k])k++;
    				h[rk[i]] = k;
    			}
    		}
    	}
    	void init(){
    		clear();
    		m = 26;
    		for(rg int i = 1;i <= n;i++)temp[i] = i;
    		for(rg int i = 1;i <= n;i++)rk[i] = s[i] - 'a' + 1;
    		qsort();
    		for(rg int d = 1;d <= n;d <<= 1){
    			int cnt = 0;
    			for(rg int i = n - d + 1;i <= n;i++)temp[++cnt] = i;
    			for(rg int i = 1;i <= n;i++)if(sa[i] > d)temp[++cnt] = sa[i] - d;
    			qsort();
    			memcpy(temp,rk,sizeof(int) * (n+1));
    			cnt = 1;
    			rk[sa[1]] = 1;
    			for(rg int i = 2;i <= n;i++){
    				if(temp[sa[i]] != temp[sa[i-1]] || temp[sa[i]+d] != temp[sa[i-1]+d])cnt++;
    				rk[sa[i]] = cnt;
    			}
    			if(cnt == n)break;
    			m = cnt;
    		}
    		calch();
    		H.prepro(h);
    	}
    	int lcp(int i,int j){
    		int x = rk[i],y = rk[j];
    		if(x > y)swap(x,y);
    		return H.query(x + 1,y);
    	}
    }S;
    
    struct PA{
    	int pa[N+5],rk[N+5],temp[N+5],num[N+5],h[N+5];
    	int m;
    	void clear(){
    		memset(pa,0,sizeof(int)*(n+2));
    		memset(rk,0,sizeof(int)*(n+2));
    		memset(temp,0,sizeof(int)*(n+2));
    	}
    	void qsort(){
    		memset(num,0,sizeof(int) * (m+1));
    		for(rg int i = 1;i <= n;i++)num[rk[i]]++;
    		for(rg int i = 2;i <= m;i++)num[i] += num[i-1];
    		for(rg int i = n;i >= 1;i--)pa[num[rk[temp[i]]]--] = temp[i];
    	}
    	ST H;
    	void calch(){
    		int k = 0;
    		for(rg int i = n;i >= 1;i--){
    			if(rk[i] == 1)h[1] = k = 0;
    			else{
    				if(k)k--;
    				int j = pa[rk[i]-1];
    				while(s[i-k] == s[j-k])k++;
    				h[rk[i]] = k;
    			}
    		}
    	}
    	void init(){
    		clear();
    		m = 26;
    		for(rg int i = 1;i <= n;i++)temp[i] = i;
    		for(rg int i = 1;i <= n;i++)rk[i] = s[i] - 'a' + 1;
    		qsort();
    		for(rg int d = 1;d <= n;d <<= 1){
    			int cnt = 0;
    			for(rg int i = 1;i <= d;i++)temp[++cnt] = i;
    			for(rg int i = 1;i <= n;i++)if(pa[i] + d <= n)temp[++cnt] = pa[i] + d;
    			qsort();
    			memcpy(temp,rk,sizeof(int) * (n+1));
    			cnt = 1;
    			rk[pa[1]] = 1;
    			for(rg int i = 2;i <= n;i++){
    				if(temp[pa[i]] != temp[pa[i-1]] || temp[pa[i]-d] != temp[pa[i-1]-d])cnt++;
    				rk[pa[i]] = cnt;
    			}
    			if(cnt == n)break;
    			m = cnt;
    		}
    		calch();
    		H.prepro(h);
    	}
    	int lcs(int i,int j){
    		int x = rk[i],y = rk[j];
    		if(x > y)swap(x,y);
    		return H.query(x + 1,y);
    	}
    }P;
    
    void calcfg(){
    	for(rg int len = 1;(len<<1) <= n;len++){
    		for(rg int i = 1;i + len <= n;i += len){
    			int j = i + len;
    			int high = P.lcs(i,j); high = min(high,len);
    			int low = S.lcp(i,j); low = max(len + 1 - low,1);
    			if(low <= high){
    				g[i-high+1]++;
    				g[i-low+2]--;
    				f[j+len-high]++;
    				f[j+len-low+1]--;
    			}
    		}
    	}
    	for(rg int i = 1;i <= n;i++)f[i] += f[i-1],g[i] += g[i-1];
    }
    
    int main(){
    	for(rg int i = 2;i <= N;i++)lg[i] = lg[i>>1] + 1;
    	int T = read();
    	while(T--){
    		scanf("%s",s + 1);
    		n = strlen(s + 1);
    		S.init();
    		P.init();
    		calcfg();
    		ll ans = 0;
    		for(rg int i = 1;i < n;i++)ans += f[i] * g[i+1];
    		cout << ans << endl;	
    		memset(f,0,sizeof(ll) * (n+2));
    		memset(g,0,sizeof(ll) * (n+2));		
    	}
    	return 0;
    }
    
  • 相关阅读:
    crontab与系统时间不一致
    MySQL构造测试数据
    【SQL优化】SQL优化工具
    mysql case when then 使用
    update没带where,寻找问题的思路
    线程池
    线程理论
    数据共享
    进程池
    管道
  • 原文地址:https://www.cnblogs.com/xh092113/p/12461037.html
Copyright © 2020-2023  润新知