• [HDU4947]GCD Array(莫比乌斯反演)


    题面

    http://acm.hdu.edu.cn/showproblem.php?pid=4947

    前置知识

    题解

    我们可以维护数组f,使得f时刻等于(a{ imes}{mu})

    考虑每次操作1 n d v对于数组a的改变量({Delta}a(x)),发现

    [{Delta}a(x)=v*[(x,n)=d] ]

    [=v[d|x][d|n][({frac{x}{d}},{frac{n}{d}})=1] ]

    如果(d{ mid}n),那么这个操作可以直接忽略。所以不妨设d|n,

    [{Delta}a(x)=v[d|x][({frac{x}{d}},{frac{n}{d}})=1] ]

    利用消gcd的技巧,反演得

    [{Delta}a(x)=v[d|x]{sumlimits_{p|{frac{x}{d}},p|{frac{n}{d}}}}{mu}(p) ]

    [={sumlimits_{p|{frac{n}{d}}}}v{mu}(p)[d|x][p|{frac{x}{d}}] ]

    [={sumlimits_{p|{frac{n}{d}}}}v{mu}(p)[pd|x] ]

    此时的({Delta}f)也应该等于({Delta}a{ imes}{mu})

    [{Delta}f(x)={sumlimits_{y|x}}{Delta}a({frac{x}{y}}){mu(y)} ]

    [={sumlimits_{y|x}}{mu}(y){sumlimits_{p|{frac{n}{d}}}}v{mu}(p)[pd|{frac{x}{y}}] ]

    [={sumlimits_{p|{frac{n}{d}}}}v{mu(p)}{sumlimits_{y|x}}{mu(y)}[pd|{frac{x}{y}}] ]

    [={sumlimits_{p|{frac{n}{d}}}} v{mu(p)} [pd|x] {sumlimits_{y|{frac{x}{pd}}}} {mu}(y) ]

    [={sumlimits_{p|{frac{n}{d}}}} v{mu(p)} [pd|x] [{frac{x}{pd}}=1] ]

    [={sumlimits_{p|{frac{n}{d}}}}v{mu(p)}[x=pd] ]

    由此可见,对于1 n d v的修改操作,只需要遍历({frac{n}{d}})的所有因子p,然后将(f(pd)+=v{mu(p)})即可。

    对于查询操作,同样将结果用f表示:

    [{sumlimits_{i=1}^{x}}a(i)={sumlimits_{i=1}^{x}}{sumlimits_{p|i}}f(p) ]

    [={sumlimits_{p}}{sumlimits_{i=1}^{x}}[p|i]f(p) ]

    [={sumlimits_{p}}{lfloor}{frac{x}{p}}{ floor}f(p) ]

    将f的前缀和使用树状数组维护,数论分块即可优化到每次询问(O({sqrt{x}}log x))

    但是,注意到这里的区间查询是O(logx)而非普通数论分块的O(1),因此此处可以进一步优化:

    设置阈值T,当查询的x小于T时使用暴力求和,否则使用数论分块。

    则暴力求和的时间复杂度为O(T),数论分块的时间复杂度为(O({frac{x}{T}}log x))。不难发现置(T={sqrt{xlog x}})时总时间复杂度最低。至此,每次询问的时间复杂度降为(O(sqrt{x log x}))

    分析总时间,各预处理均在nlogn级别及以下,(n为数组长度),每次修改是(O({sqrt{n}} log n)),查询是(O(sqrt{n log n}))。故总时间复杂度应为(O(CQ{sqrt{n}} log n)),(C为数据组数),且此处的根号来源于因子个数,其常数极小。

    代码

    #include<bits/stdc++.h>
    
    using namespace std;
    
    #define ll long long
    #define rg register
    #define N 50000
    #define W 200000
    
    inline ll read(){
    	ll s = 0,ww = 1;
    	char ch = getchar();
    	while(ch < '0' || ch > '9'){if(ch == '-')ww = -1;ch = getchar();}
    	while('0' <= ch && ch <= '9'){s = 10 * s + ch - '0';ch = getchar();}
    	return s * ww;
    }
    
    inline void write(ll x){
    	if(x < 0)putchar('-'),x = -x;
    	if(x > 9)write(x / 10);
    	putchar('0' + x % 10);
    }
    
    ll n,Q;
    ll a[N+5],f[N+5],lg[W+5];
    vector<ll>fac[W+5];
    
    inline void prepro(){ //预处理因子和log 
    	for(rg ll i = 1;i <= W;i++)
    		for(rg ll j = i;j <= W;j += i)fac[j].push_back(i);
    	lg[1] = 0;
    	for(rg ll i = 2;i <= W;i++)lg[i] = lg[i>>1] + 1;
    }
    
    ll pn;
    bool isp[W+5];
    ll pri[40000+5],mu[W+5];
    
    inline void Eular(){ //线性筛 
    	mu[1] = 1;
    	for(rg ll i = 2;i <= W;i++)isp[i] = 1;
    	for(rg ll i = 2;i <= W;i++){
    		if(isp[i])pri[++pn] = i,mu[i] = -1;
    		for(rg ll j = 1;i * pri[j] <= W;j++){
    			isp[i*pri[j]] = 0;
    			if(i % pri[j])mu[i*pri[j]] = -mu[i];
    			else{
    				mu[i*pri[j]] = 0;
    				break;
    			}
    		}
    	}
    }
    
    inline ll lowbit(ll x){
    	return x & -x;
    }
    
    struct BIT{
    	ll b[N+5];
    	
    	inline void reset(){
    		memset(b,0,sizeof(b));
    	}
    	
    	inline void ud(ll x,ll dx){
    		for(rg ll i = x;i <= n;i += lowbit(i))b[i] += dx;
    	}
    	
    	inline ll query(ll x){
    		ll rt = 0;
    		for(rg ll i = x;i;i -= lowbit(i))rt += b[i];
    		return rt;
    	}
    	
    	inline ll sum(ll l,ll r){
    		return query(r) - query(l - 1);
    	}
    }B;
    
    int main(){
    	prepro(); 
    	Eular(); 
    	n = read(),Q = read();
    	ll t = 0;
    	while(n || Q){
    		printf("Case #%lld:
    ",++t);
    		B.reset();
    		memset(a,0,sizeof(a));
    		memset(f,0,sizeof(f));
    		while(Q--){
    			ll opt = read();
    			if(opt == 1){
    				ll _n = read(),d = read(),v = read();
    				if(_n % d)continue;
    				for(rg ll i = 0;i < fac[_n/d].size();i++){
    					ll p = fac[_n/d][i];
    					if(p * d > n)break;
    					f[p*d] += mu[p] * v;
    					B.ud(p * d,mu[p] * v); 
    				}
    			}
    			else{
    				ll x = read();
    				ll T = (ll)round(sqrt(x*lg[x])); 
    				if(T > x)T = x;
    				ll ans = 0;
    				for(rg ll i = 1;i <= T;i++)ans += f[i] * (x / i); //sqrt(xlogx)以下暴力求和 
    				ll L,R = T;
    				while(R != x){ //sqrt(xlogx)以上数论分块 
    					L = R + 1;
    					R = x / (x / L);
    					ans += B.sum(L,R) * (x / L);
    				}
    				write(ans),putchar('
    ');
    			}
    		}
    		n = read(),Q = read();	
    	}
    	return 0;
    }
    
  • 相关阅读:
    周六,晴转雨
    时间概念
    2014-7-24-早
    2014-7-22
    [SPM_LAB]持续集成实验
    [软件测试_LAB2]使用Selenium进行自动化测试
    [软件测试_hw3]路径覆盖测试
    [软件测试_LAB1]安装junit和hamcrest及其使用
    [软件测试_hw2]Failure&Error
    [SPM_hw1]记一次项目经历
  • 原文地址:https://www.cnblogs.com/xh092113/p/12272719.html
Copyright © 2020-2023  润新知