• OpenCV学习笔记


    cv::getRotationMatrix2D(center, angle_deg, scale) // 角度从图像上看为逆时针方向,从xy坐标看为顺时针方向
    cv::String cv::format( const char* fmt, ... );

    OpenCV Rect矩形框提取ROI,不能超出图像范围

    cv::Mat image = cv::imread("xxx。jpg");
    cv::Rect roi(-100,200, 500,500); // x< 0
    cv::imshow("image(roi)", image(roi)); // image(roi)报错
    cv::Mat image = cv::imread("test.jpg");
    cv::Rect roi(100,200, image.rows+100, image.cols); // x< 0
    cv::Mat img_show = image(roi); // image(roi)报错
    cv::imshow("image(roi)", img_show);

    OpenCV 矩形&|运算例程:

    // Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height);
    cv::Rect r1(0, 0, 200, 100);
    cv::Rect r2(250, 50, 200, 100);
    cv::Rect rect_overlap = r1 & r2;
    cv::Rect rect_sum = r1 | r2;
    
    std::cout<< "r1 = " << r1 << std::endl;
    std::cout<< "r2 = " << r2 << std::endl;
    std::cout<< "rect_overlap = " << rect_overlap << std::endl;
    std::cout<< "rect_sum     = " << rect_sum << std::endl;
    
    运行结果如下:
    r1 = [200 x 100 from (0, 0)]
    r2 = [200 x 100 from (250, 50)]
    rect_overlap = [0 x 0 from (0, 0)]
    rect_sum     = [450 x 150 from (0, 0)]

    测试cv::solvePnP,循环体最小耗时<0.4ms

        for (int k = 0; k < 100; k++)
        {
    
            const int64 time_start = cv::getTickCount();
            cv::Mat rvec, tvec;
            std::vector<cv::Point2f> image_points;
            std::vector<cv::Point3f> object_points;
            object_points.push_back(cv::Point3f(0.0f, 0.0f, 0.0f));
            object_points.push_back(cv::Point3f(1.0f, 0.0f, 0.0f));
            object_points.push_back(cv::Point3f(1.0f, 1.0f, 0.0f));
            object_points.push_back(cv::Point3f(0.0f, 1.0f, 0.0f));
    
            image_points.push_back(cv::Point2f(0.0f, 0.0f));
            image_points.push_back(cv::Point2f(3.0f, 0.0f));
            image_points.push_back(cv::Point2f(2.0f, 2.0f));
            image_points.push_back(cv::Point2f(0.0f, 3.0f));
    
            cv::solvePnP(
                        object_points, // 3-d points in object coordinate
                        image_points,  // 2-d points in image coordinates
                        intrinsic,     // Our camera matrix
                        distortion,    // distortion coefficients
                        rvec, // Output rotation *vector*.
                        tvec  // Output translation vector.
                        );
    
            printf("time span = %f secs
    ", (cv::getTickCount()-time_start)/cv::getTickFrequency());
        }

    OpenCV多目标跟踪例程:

    #include<tracking.hpp> 
    #include<highgui.hpp> 
    #include<video.hpp> 
    #include<coreutility.hpp> 
    #include<vector> 
    using namespace cv; 
    using namespace std; 
    int main() 
    {
        Mat frame; 
        VideoCapture cap("1.mp4");//输入待处理的视频 
        cap >> frame; 
        vector<Rect> rois; 
        selectROIs("rois", frame, rois, false); // GUI操作框选ROIs
        if (rois.size()<1) return 0;
        MultiTracker trackers;
        vector<Rect2d> obj;
        vector<Ptr<Tracker>> algorithms;
        for (auto i = 0; i < rois.size(); i++)
        {
            obj.push_back(rois[i]);
            algorithms.push_back(TrackerKCF::create());
        } 
        trackers.add(algorithms, frame, obj);
        while (cap.read(frame))
        {
            bool ok = trackers.update(frame);
            if (ok)
            {
                for (auto j = 0; j < trackers.getObjects().size(); j++)
                {
                    rectangle(frame, trackers.getObjects()[j], Scalar(255, 0, 0), 2, 1);
                }
                imshow("tracker", frame);
            }
            if (waitKey(1) == 27)break;
        }
        return 0;
    }

    cv::Point 支持直接乘法

    cv::Point p(100,200);

    p = p*0.3; // 结果p=(30,60)

    cv::Point2f ptf(0.3f, 0.7f);
    cv::Point pti;
    pti = ptf; # 内部采用四舍五入取整
    std::cout << "cv::Point2f: " << ptf.x << ", " << ptf.y << std::endl;
    std::cout << "cv::Point: " << pti.x << ", " << pti.y << std::endl;

    cv::contourArea(contour) // contour.size必须>0,否则有assert报错

    cv::selectROI() // 选择rect

    cv::selectROIs() // 选择rect

     以下代码测试了OpenCV的DFT,注意:

    1. 按照实部->[0]位置,虚部->[1]位置设置能正常运行,反之也能,为了不至于混淆,一律实部->[0],虚部->[0]。
    2. 此例程只测试了一行的效果,实际上单独一列算出来结果也一样正确。

     

        const float fb = 5.1f; // 信号频率
        const float T  = 1.0f; // 总时间
        const float fs = 32.0f; // 采样率
        const float Ts = 1.0/fs; // 采样间隔
        const int real_id = 0, imag_id = 1;
        cv::Mat x = cv::Mat::zeros(1, (int)std::round(T*fs), CV_32FC2);
        cv::Mat F = x.clone();
    
        for (int k = 0; k < x.cols; k++)
        {
            const float t = k*Ts;
            x.at<cv::Vec2f>(0,k)[real_id] = std::cos(2*CV_PI*fb*t);
        }
        cv::dft(x, F, cv::DFT_SCALE);
        for (int k = 0; k < x.cols; k++)
        {
            printf("x(%03d) = %+08.3f + %+08.3f*i
    ",
                   k, x.at<cv::Vec2f>(0,k)[real_id], x.at<cv::Vec2f>(0,k)[imag_id]);
        }
        for (int i = 0; i < F.cols; i++)
        {
            const int k = (i + (F.cols/2)) % F.cols;
            const float f = ((float)k/T < fs/2) ? ((float)k/T) : ((float)k/T - fs);
    
            const float real_part = F.at<cv::Vec2f>(0,k)[real_id];
            const float imag_part = F.at<cv::Vec2f>(0,k)[imag_id];
    
            printf("%03d#   F(%+08.3f) = %+08.3f + %+08.3f*i =  %+08.3f @%+08.3f度
    ",
                   k, f, real_part, imag_part,
                   cv::norm(F.at<cv::Vec2f>(0,k)), CV_PI/180.0*atan2(imag_part, real_part));
        }

    读取参数文件最简洁案例如下,由于要加载、释放两次文件,所以速度比加载一次慢。 当然加载一次的方案实现起来没有这么简洁。

    cv::FileStorage(“file_name.yml", cv::FileStorage::READ)["parameter_1"] >>  parameter_1;

    cv::FileStorage(“file_name.yml", cv::FileStorage::READ)["parameter_2"] >>  parameter_2;

    用opencv cv::FileStorage读取xml文件时,要求xml文件根目录必须是<opencv_storage>,否则会报错

    cv::fillConvexPoly(image_to_fill, one_contour, cv::Scalar(255), cv::LINE_AA);  // 填充one_contour包含区域,结果在image_to_fill中

    cv::resize(img_src, img_linear, cv::Size(13, 13), 0, 0, cv::INTER_LINEAR); // 双线性
    cv::resize(img_src, img_area, cv::Size(13, 13), 0, 0, cv::INTER_AREA ); // 取区域平均值

    OpenCV在处理+-*/时,会自动处理饱和,如下代码中,如果dat为CV_8UC1,相减后的像素如果<0,则会置为0,不用担心溢出。

        cv::Mat dat;
        // .... ohter code
        dat = dat - cv::mean(dat);
  • 相关阅读:
    高可用
    网络线之坑:线序接错了,导致时常出现“未识别的网络”
    Cocos2d-x 坑之一:Xcode文件真实目录与工程视图目录
    【转】ios中@class和 #import 的使用时机
    virtualenv 模块
    pipreqs 组件
    5.15 pymysql 模块
    5.14 数据库函数,流程控制
    5.13 数据库存储过程
    5.12 数据库事务
  • 原文地址:https://www.cnblogs.com/xbit/p/8449891.html
Copyright © 2020-2023  润新知