• 轻松学习RSA加密算法原理


    转自:http://blog.csdn.net/sunmenggmail/article/details/11994013

    http://blog.csdn.net/q376420785/article/details/8557266

    http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

    以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关。但是,看了很多关于RSA加密算法原理的资料之后,我发现其实原理并不是我们想象中那么复杂,弄懂之后发现原来就只是这样而已..

      学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。

    必备数学知识

      RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。

    素数

      素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。

    互质数

      百度百科上的解释是:公因数只有1的两个数,叫做互质数。;维基百科上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。

      常见的互质数判断方法主要有以下几种:

    1. 两个不同的质数一定是互质数。例如,2与7、13与19。
    2. 一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。
    3. 相邻的两个自然数是互质数。如 15与 16。
    4. 相邻的两个奇数是互质数。如 49与 51。
    5. 较大数是质数的两个数是互质数。如97与88。
    6. 小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
    7. 2和任何奇数是互质数。例如2和87。
    8. 1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
    9. 辗转相除法。

    指数运算

      指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。

    模运算

      模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个整数,若得相同余数,则二整数同余

      两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于bm,或者,ab关于模m同余。例如:26 ≡ 14 (mod 12)。

    RSA加密算法

    RSA加密算法简史

      RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。

    公钥与密钥的产生

      假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥

    1. 随意选择两个大的质数pqp不等于q,计算N=pq
    2. 根据欧拉函数,求得r = (p-1)(q-1)
    3. 选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)
    4.  p  q 的记录销毁。

    (N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。

    加密消息

      假设Bob想给Alice送一个消息m,他知道Alice产生的Ne。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c

      ne ≡ c (mod N)

    计算c并不复杂。Bob算出c后就可以将它传递给Alice。

    解密消息

    Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n

      cd ≡ n (mod N)

    得到n后,她可以将原来的信息m重新复原。

    解码的原理是:

      cd ≡ n e·d(mod N)

    以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由费马小定理可证明(因为pq是质数)

      n e·d ≡ n (mod p)   和  n e·d ≡ n (mod q)

    这说明(因为pq不同的质数,所以pq互质)

      n e·d ≡ n (mod pq)

    签名消息

      RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。

    编程实践

      下面,开始我们的重点环节:编程实践。在开始编程前,我们通过计算,来确定公钥和密钥。

    计算公钥和密钥
    1. 假设p = 3、q = 11(p,q都是素数即可。),则N = pq = 33;
    2. r = (p-1)(q-1) = (3-1)(11-1) = 20;
    3. 根据模反元素的计算公式,我们可以得出,e·d ≡ 1 (mod 20),即e·d = 20n+1 (n为正整数);我们假设n=1,则e·d = 21。e、d为正整数,并且e与r互质,则e = 3,d = 7。(两个数交换一下也可以。)

      到这里,公钥和密钥已经确定。公钥为(N, e) = (33, 3),密钥为(N, d) = (33, 7)。

    编程实现

      下面我们使用Java来实现一下加密和解密的过程。具体代码如下:

    RSA算法实现:

    [java] view plaincopy
     
     
    1. <span style="font-size:14px;">package security.rsa;  
    2.   
    3. public class RSA {  
    4.       
    5.     /** 
    6.      *  加密、解密算法 
    7.      * @param key 公钥或密钥 
    8.      * @param message 数据 
    9.      * @return 
    10.      */  
    11.     public static long rsa(int baseNum, int key, long message){  
    12.         if(baseNum < 1 || key < 1){  
    13.             return 0L;  
    14.         }  
    15.         //加密或者解密之后的数据  
    16.         long rsaMessage = 0L;  
    17.           
    18.         //加密核心算法  
    19.         rsaMessage = Math.round(Math.pow(message, key)) % baseNum;  
    20.         return rsaMessage;  
    21.     }  
    22.       
    23.       
    24.       
    25.     public static void main(String[] args){  
    26.         //基数  
    27.         int baseNum = 3 * 11;  
    28.         //公钥  
    29.         int keyE = 3;  
    30.         //密钥  
    31.         int keyD = 7;  
    32.         //未加密的数据  
    33.         long msg = 24L;  
    34.         //加密后的数据  
    35.         long encodeMsg = rsa(baseNum, keyE, msg);  
    36.         //解密后的数据  
    37.         long decodeMsg = rsa(baseNum, keyD, encodeMsg);  
    38.           
    39.         System.out.println("加密前:" + msg);  
    40.         System.out.println("加密后:" + encodeMsg);  
    41.         System.out.println("解密后:" + decodeMsg);  
    42.           
    43.     }  
    44.     </span>  
    45.       
    46. }  

    RSA算法结果:

    加密前:24
    加密后:30
    解密后:24

    (看程序最清楚了,对于要加密的数字m, m^e%N=c, c就是加密之后的密文。c^d%N=m, 就能解密得到m)

    RSA加密算法的安全性

      当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。

      1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。假如量子计算机有朝一日可以成为一种可行的技术的话,那么秀尔的算法可以淘汰RSA和相关的衍生算法。(即依赖于分解大整数困难性的加密算法)

      另外,假如N的长度小于或等于256,那么用一台个人电脑在几个小时内就可以分解它的因子了。1999年,数百台电脑合作分解了一个512位长的N。1997年后开发的系统,用户应使用1024位密钥,证书认证机构应用2048位或以上。

    RSA加密算法的缺点

      虽然RSA加密算法作为目前最优秀的公钥方案之一,在发表三十多年的时间里,经历了各种攻击的考验,逐渐为人们接受。但是,也不是说RSA没有任何缺点。由于没有从理论上证明破译RSA的难度与大数分解难度的等价性。所以,RSA的重大缺陷是无法从理论上把握它的保密性能如何。在实践上,RSA也有一些缺点:

      1. 产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密;
      2. 分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,。
  • 相关阅读:
    使用批处理查找某个文件夹及其子文件夹(递归地)中存在的空文件夹
    pl/sql连接oracle
    JSON对象转换成url参数
    创建maven工程
    线程同步
    java.lang.Object 的 wait 和 notify方法,及关键字 synchronized的作用
    Thread操作
    java.lang.io包的使用
    用程序打印汉字
    java程序员应该熟练掌握的技术
  • 原文地址:https://www.cnblogs.com/x_wukong/p/5326161.html
Copyright © 2020-2023  润新知